

Electrical Safety und Quality Application Trainer MI 3399 Kurzanleitung

Version 1.1.6, Bestellnr. 20 752 895

Autorisierter Distributor

Händler:

Autorisierter Distributor

TVW Meßtechnik GmbH Semmelweg 31 32257 Bünde Fon: 05223 / 9277 - 0 Fax: 05223 / 9277 - 40 info@tvwbuende.de www.tvwbuende.de

6		2
1 -	-	- 1
U		J

Metrel d.d. Ljubljanska cesta 77 SI1354 Horjul Slovenia web Seite: <u>http://www.metrel.si</u> E-mail: <u>metrel@metrel.si</u>

© 2015 METREL Starkstromanlagen - Tests und Prüfungen, Miha Doberlet, METREL 2016

Dieses Dokument darf ohne ausdrückliche schriftliche Genehmigung von METREL weder vervielfältigt noch in irgendeiner anderen Form genutzt werden.

INHALTSVERZEICHNIS

Einführung		4
AD 1 – MI 3399	EIS Electrical Installation Safety Traine	1
AD 2 – MI 3399	PQA Trainer für Netz- und Spannungsqualität 13	1
AD 3 – MI 3399	GT Geräte und Maschinen Sicherheits Trainer 22	1
AD 4 – MI 3399	Trainer für PV Photovoltaik Systeme	6

Einführung

INHALTSVERZEICHNIS

1	Einf	ührung	6
2	Bes	chreibung der MI 3399 Application Trainer Set Moduls	7
	2.1	AD1 MI 3399 – EIS Electrical Installation Safety Trainer	7
	2.2	AD2 MI 3399 – PQA Trainer für Netz- und Spannungsqualität	8
	2.3	AD3 MI 3399 - GT Geräte und Maschinen Sicherheits Trainer	9
	2.4	AD4 MI 3399 – Trainer für PV Photovoltaik Systeme	9
3	Aus	packen des Application Trainers 1	0
4	Bes	chreibung des MI 3399 Application Trainers1	5
	4.1	Technische Daten1	5
	4.2 4.2.1 4.2.2 4.2.3	Anschluss an die Netzspannung	6 17 19
	4.3	Vorderansicht2	:1
	4.4	Wesentliche Teile des Application Trainers2	:1
	4.5	Bedeutung der Abkürzungen am MI 3399 Application Trainer2	:5
	4.6	Einstellung der Parameter des Application Trainers2	6
5	War	tung2	9
	5.1	Reinigung2	9
	5.2	Kundendienst2	9

ABBILDUNGSSVERZEICHNIS

Abhildung 3-1: Auspacken des Application Trainers (1)	Λ
Abbildung 3-2: Auspacken des Application Trainers (2)	0
Abbildung 3-2. Auspacken des Application Trainers (2)	4
Abbildung 3-3: Auspacken des Application Trainers (3)	1
Abbildung 3-4: Auspacken des Application Trainers (4)	1
Abbildung 3-5: Auspacken des Application Trainers (5)	1
Abbildung 3-6: Auspacken des Application Trainers (6) 12	2
Abbildung 3-7: Auspacken des Application Trainers (7) 12	2
Abbildung 3-8: Auspacken des Application Trainers (8)	3
Abbildung 3-9: Auspacken des Application Trainers (9)	3
Abbildung 3-10: Auspacken des Application Trainers (10)	4
Abbildung 3-11: Auspacken des Application Trainers (11)	4
Abbildung 3-12: Auspacken des Application Trainers (12)	5
Abbildung 3-13: Auspacken des Application Trainers (13)	5
Abbildung 4-1: Anschluss des Application Trainers an eine einphasige Steckdose. 1	7
Abbildung 4-2: Erklärung der MI 3399 Application Trainer Lampen.	8
Abbildung 4-3: Anschluss des Application Trainers an eine 3-phasige Steckdose 1	9
Abbildung 4-4: Vorderseite	1
Abbildung 4-5: Bestandteile des Application Trainers	2
Abbildung 4-6: Position der RCDs, Sicherungen, Leistungsschalter, Steckdosen un	d
Schalter.	4

TABELLENVERZEICHNIS

Tabelle 41: Technische Daten	15
Tabelle 42: Liste der Parametereinstellungen am Application Trainer (Teil 1)	26
Tabelle 43: Liste der Parametereinstellungen am Application Trainer (Teil 2)	27
Tabelle 44: Liste der Parametereinstellungen am Application Trainer (Teil 3)	28

1 Einführung

Der **Electrical Safety und Quality Application Trainer MI 3399** ist eine Mehrzweck-Trainings-Plattform, sie ist geeignet für technische Schulen, Ausbildungszentren und unabhängige Organisationen, die die Kompetenz der Teilnehmer bewerten und das praktische und theoretische Wissen ihrer Zuhörer verbessern möchten. Der MI 3399 ist ideal für Training und Ausbildung von größeren Gruppen von Menschen als auch für unabhängige Trainings geeignet.

Der MI 3399 Application Trainer gewährleistet die Sicherheit der Benutzer. Schutzschaltungen überwachen permanent gefährliche Berührungsspannungen und schalten im Fehlerfall das Board automatisch ab.

Er simuliert reale Niederspannungsinstallationen, spezielle elektrische Installationen für medizinische Operationsräume, mobile Installationen in Fahrzeugen, geerdete und nicht geerdete TN / TT / IT-Systeme, Erdungs- und Erdungspunkte, LPS-Blitzschutzsystem, dreiphasige Spannungs- und Netzqualitässituationen, GT und Maschinen Trainingsmodul, Photovoltaik Trainingsmodul und vieles mehr. Wesentliche Elemente wie Sicherungen, RCD-Schutzschalter, Steckdosen, Alarme usw. sind eingebaut.

Die Simulation von möglichen Fehlern bringt das Know-how über die Fehlersuche, Wartung und die Ausführung verschiedener Messungen an der Elektroinstallation. Es ist auch darauf ausgerichtet, in Verkaufs-Demonstrationsräumen zur Präsentation von Elektroinstallationstestern und deren Anwendung eingesetzt zu werden.

Der MI 3399 ist für den Transport zusammenklappbar. Der MI 3399 ist so konzipiert, dass er mit nur zwei Schrauben am Ort des Trainings, Seminar oder Messe leicht zu montieren ist. Die Abmessungen sind 210 cm (H) × 125 cm (L) × 125 cm (B).

Anwendungen:

- Ausbildung, Schulungen und Seminare mit theoretischen und praktischen Übungen und Tests zur Verbesserung der Kenntnisse und der Fachkompetenz.
- Ausbildung und praktische Schulung von Elektroinstallateuren zu Sicherheitsverfahren , Messverfahren und Wissen;
- Demonstration, wie die verschiedenen Messinstrumente und Tester zu verwenden sind.

Das MI 3399 Electrical Safety & Quality Application Trainer Set ermöglicht mehrere Hauptschulungsmodule und Kurse:

- Trainer-Modul LV Elektrische Installation Sicherheit
- Trainer-Modul TN / TT / IT-Erdungssysteme
- Trainer-Modul Blitzschutz, Trainer Modul Überspannungsschutz
- Trainer-Modul Spezielle Anlagen und Standorte Sicherheit
- Trainer Modul Fahrzeuge und Mobilgeräte Sicherheit

Zusätzlich sind noch verschiedene optionale Module verfügbar:

- Trainer-Modul Netz- und Spannungsqualität
- Trainer Modul Geräte und Maschinen Sicherheit
- Trainer Modul Photovoltaik Systeme
- Trainer Modul für die Qualität von LAN und Telekommunikationsanlagen

Die Module werden mit Handbüchern, Postern, Schaubildern, Präsentationen, Übungen, Arbeitsblättern und Prüfungsunterlagen unterstützt, sowie einem anerkannten Zertifikat wenn das Trainingsmodul abgeschlossen ist.

2 Beschreibung der MI 3399 Application Trainer Set Moduls

Alle Module sind voll funktionsfähig, sobald der Application Trainer MI 3399 eingeschaltet (EIN) ist.

2.1 AD1 MI 3399 – EIS Electrical Installation Safety Trainer

Untermodule des EIS Elektrische Installation Sicherheits-Trainers:

- Trainer-Modul LV Elektrische Installation Sicherheit
- Trainer-Modul TN / TT / IT Erdungssysteme
- Trainer-Modul Blitzschutz, Trainer Modul Überspannungsschutz
- Trainer-Modul Spezielle Anlagen und Standorte Sicherheit

Das Modul beinhaltet folgende Ausstattung:

- MI 3152 ST Eurotest XC Multifunctional Installation Tester
- MI 3110 EurotestIM Spezielle Installationstester
- MI 3242 MicroOhm 2A-Erdverbindung 4-Leiter
- MI 3121H 2,5 kV HV Insulations Analyser
- MI 3123 Smartec Erdungsprüfgerät
- MI 2014 Cable Scanner LAN Kabel Tester
- MD 9272 TRMS Ableitstrom-Messzange mit Leistungsfunktionen
- Stromzange A 1018 (niedriger Bereich, Ableitstromstrom)
- MD 1019 Stromzange
- S 2009 Prüfleitungssatz, 2m, 4 Stück
- 25 Stück Leitfaden zum Prüfen und Überprüfen von Niederspannungsanlagen
- 25 Stück Leitfaden für Messungen an IT-Energieanlagen
- 25 Stück Schaubilder Überprüfung von Niederspannungs -Elektro-Installationen
- Poster Verifikation auf Niederspannungsanlagen
- Poster Medizinische Standorte
- Poster Feuerwehren

Das Trainer Set für Electrical Safety und Quality Application ermöglicht die Durchführung der folgenden Tests:

- Durchgang von PE-Leitern
- Erdverbindung 4-Leiter (mit MI 3242)
- Isolationswiderstand
- HV-Isolationsanalyse, PI, DAR-Faktoren (mit MI3121H)
- Leitungsimpedanz
- Schleifenimpedanz
- RCD-Prüfung (Berührungsspannung , Auslösestrom, Auslösestrom , Autotest)
- IMD, ELM, RCM Ableitstrom und Isolationswächter Einstellung und Prüfung

- Erdungswiderstand 4 Leiter, 3 Leiter, 2 Leiter, zwei Stromzangen)
- Spez. Erd. Wdst
- Blitzschutz und Schutz Schleifenimp.
- Überspannungsschutz Prüfung
- Ableitstrom
- Drehfeld
- AUTOSEQUENCE[®] Verfahren für TN, TT oder TT Erdungssystem.

Mehr als 65 verschiedene Messungen und Prüfverfahren können nach IEC 61557 und IEC 60364-6 nachgewiesen werden (Isolationswiderstand, Durchgang von Schutzleitern, Erdungswiderstand, spezifischer Erdungswiderstand, Leitungs- und Schleifenimpedanz, Phasenfolge, Ableitstrom, RCD Prüfung, Spannung und Frequenz und weitere).

Die wichtigsten Elemente sind integriert: Verschiedenen Typen RCDs, Sicherungen, Potentialausgleichschienen, 1-Phasen- und 3-Phasen Steckdosen, verschiedene Erdungssysteme (TT, TN, IT), Überspannungsschutz , IMD Isolationsüberwachungsmonitor und mehr.

Mehr als 20 verschiedene Fehler können eingestellt werden, die als Probleme im Feld auftreten, analysiert und Fehlerbeseitigungsverfahren trainiert werden können.

2.2 AD2 MI 3399 – PQA Trainer für Netz- und Spannungsqualität

Das Modul beinhaltet folgende Ausstattung:

- MI 2892 Power Master Analyse der Netzqualität
- 25 Stück Leitfaden für die moderne Netz-Qualitäts-Analyse Techniken
- 25 Stück Schaubilder Netzqualitäts-Analyse und Verfahren zur Problemlösung

Das Trainer Set für Netz- und Spannungsqualität ermöglicht die Durchführung folgender Tests:

- Periodische Aufzeichnung
- min., max., Durchschnitt Grafiken
- Phasendiagramm
- Aufzeichnung von Oberwellen
- Frequenzmessung
- Aufzeichnung der Spannungsqualität
- Aufzeichnung von Spannungsereignissen
- Spannungseinbrüche, Spannungsüberhöhungen, Spannungsabfälle, Unterbrechungen
- Wellenform
- Transienten
- Inrush
- Flicker
- Spannungsasymmetrie
- -

2.3 AD3 MI 3399 - GT Geräte und Maschinen Sicherheits Trainer

Das Modul beinhaltet folgende Ausstattung:

- MI 3309 BT DeltaGT
- A 1488 BT Etikettendrucker Able (mit Batterieladegerät und einer Rolle Etiketten)
- 25 Stück Leitfaden zur Überprüfung der elektrischen Sicherheit von Maschinen
- 25 Stück Leitfaden für Prüfung elektrischer Geräte
- 25 Stück Schaubilder Prüfung und Verifikation elektrotechnischer Anlagen
- Poster für die Prüfung tragbarer Geräte und elektrischer Einrichtungen

Das Trainer Set für Geräte und Maschinen Sicherheit ermöglicht die Durchführung folgender Tests und Fehlersimulationen:

- Durchgang des Potentialausgleichs
- Isolationswiderstand
- PE Ableitstrom
- Ersatzableitstrom
- Berührungsableitstrom
- Polarität von Kabeln
- Funktionelle Bedienung
- AUTOSEQUENCE® Verfahren

Beispiele sind folgende elektrische Gerätesimulatoren:

- Tragbare Geräte der Klasse I (Bügeleisen)
- Tragbare Geräte der Klasse II (Funkempfänger)
- Tragbare Geräte der Klasse I (Verlängerungskabel auf Trommel)
- Tragbare Geräte der Klasse I (Kaffeemaschine)
- Tragbare Geräte der Klasse I (Waschmaschine)
- Niederspannungsschaltanlage
- Elektrische Maschinen
- IEC-Kabel

2.4 AD4 MI 3399 – Trainer für PV Photovoltaik Systeme

Das Modul beinhaltet folgende Ausstattung:

- MI 3109 PS EurotestPV Pro Set
- 25 Stück Leitfaden für Messungen an PV Systemen

Das Set für PV Photovoltaik Systeme ermöglicht die Durchführung der folgenden Tests:

- PV String Isolationswiderstand,
- Widerstand der Verbindung vom PV-Panel Metallträger zum Schutzleiter,
- PV String U/I Kennlinie,
- PV String DC Strom,
- PV String DC Leistung,
- Strahlungsdichte.

- Temperatur auf den PV Panels,
- Inverter Ausgang AC. Strom,
- Inverter Ausgang AC. Spannung,
- Inverter Ausgang AC. Leistung,
- Effizienz von Wechselrichtern und PV-Systemen.

3 Auspacken des Application Trainers

Abbildung 3-1: Auspacken des Application Trainers (1)

Abbildung 3-2: Auspacken des Application Trainers (2)

Entfernen Sie die untere Abdeckung.

Entfernen Sie die obere Abdeckung.

Abbildung 3-3: Auspacken des Application Trainers (3)

Abbildung 3-4: Auspacken des Application Trainers (4)

Abbildung 3-5: Auspacken des Application Trainers (5)

Entfernen Sie die oberen und seitlichen Abdeckungen.

Bereiten Sie den MI 3399 vor, um ihn auf Rollen zu stellen. Überprüfen Sie zuerst alle Rollen. Reinigen Sie den Aufstellbereich. Achten Sie auf genügend Platz für die Bediener.

Achten Sie auf das Netzkabel. Legen Sie es an einem sicheren Ort. Treten Sie nicht darauf und stellen Sie den MI 3399 beim Manövrieren nicht auf das Kabel.

Abbildung 3-6: Auspacken des Application Trainers (6)

Abbildung 3-7: Auspacken des Application Trainers (7)

Nehmen Sie den oberen Teil des MI 3399 ab. Zusätzliche Hilfe ist erforderlich, um den MI 3399 während dieses Schritts zu schützen, damit er sanft auf die Rollen gestellt werden kann.

Entfernen Sie die Schrauben an der Rückseite des MI 3399. Bewahren Sie die Schrauben für die spätere Montage der Eckwände auf (Abb.10).

Entfernen Sie den letzten Teil der Transportkiste. Für weitere Transporte wird die Transportkiste wieder benötigt. Bitte bewahren Sie alle Teile der Transportkiste in trockener Umgebung auf.

Abbildung 3-8: Auspacken des Application Trainers (8)

Abbildung 3-9: Auspacken des Application Trainers (9)

Bereiten Sie das Unterteil vor. Unter der Abdeckung befinden sich zwei Leitungen. Verbinden Sie den blauen und schwarzen Bananenstecker mit den blauen und schwarzen Bananenbuchseen auf der Unterseite des MI3399. Passe das Eck-Unterteil an die Wand-Ecke an.

Verwenden Sie die langen Schrauben aus der Transportkiste und verbinden Sie die Wände mit dem Unterteil.

Abbildung 3-10: Auspacken des Application Trainers (10)

Abbildung 3-11: Auspacken des Application Trainers (11)

Der Schlüssel befindet sich am Seitenfach der Ecke, befestigt an der Blitzableiterstange.

Öffnen Sie das Seitenfach. Die Tischplatte befindet sich im Seitenfach, nehmen Sie sie heraus.

In Seitenfach sind noch zusätzliche Teile. Montieren Sie die Kunststoffhalter an der Wand. Abbildung 3-12: Auspacken des Application Trainers (12)

Verbinden Sie den oberen Teil der Blitzableiter miteinander. Verwenden Sie die beiliegenden Verbindungen und Schrauben.

Abbildung 3-13: Auspacken des Application Trainers (13)

4 Beschreibung des MI 3399 Application Trainers

4.1 Technische Daten

Netzanschluss	3-phasig (4 m) Typ 3P + N + PE oder einphasig,
	mit einem 1-Phasen-Adapter (2 m).
Breite	125 cm x 125 cm
Höhe	220 cm
Gewicht	Ca. 240 kg 350 kg mit Verpackung
Befestigung zu einem Tisch:	mit zwei Schrauben (Abstand zwischen den
	Befestigungslöchern beträgt 700 mm)
Geltende Normen	EN 61010-1 (Sicherheit)
	EN 61326 (EMC)
Prüfbuchsen	1-phasig mit PE-Anschluss
	3-phasig (3L+N+PE)
Schutzklassifizierung	KLASSE I (PE-Anschluss mit Metallgehäuse
	verbunden)
Absicherung	Sicherung B 10
Nennspannung	230 V oder 110V
Nennstrom	10 A
Nennfrequenz	50 oder 60 Hz
Betriebstemperatur	Von 10°C bis 40°C
Luftfeuchtigkeit bei Betrieb	< 90 % bei 30°C
Maximale Arbeitshöhe	3000 m
Schutzart	1
Verschmutzungsgrad	2
Überspannungskategorie	CAT II / 300 V

Der MI 3399 Application Trainer ist von Metrel CE-zertifiziert.

Tabelle 4.-1: Technische Daten

4.2 Anschluss an die Netzspannung

Vor dem Anschluss des MI 3399 Application Trainer an das Versorgungsnetz, müssen folgende Punkte vom Bediener überprüft werden:

- Das der PE-Anschluss an Netzsteckdose vorhanden ist, an der der MI 3399 Application Trainer angeschlossen werden soll.
- Dass an der Steckdose keine Schäden festgestellt werden (mechanische Beschädigungen, gebrochene Kontakte etc.).
- Dass am Stecker des Application Trainers und an der Application Trainer selbst keine Schäden vorhanden sind (beschädigte Steckdosen, mechanische Beschädigungen anderer Elemente usw.)
- Es ist ein FI-Schutzschalter Δ = 30 mA I_Δ=30 mA (oder ein anderer Schutzschalter) vorhanden ist, der in der Netzinstallation zum Trennen des MI 3399 im Fehlerfall verwendet wird (Empfehlung) ¹.
- In der Nähe des MI 3399 Application Trainer muss auch ein 3-phasiger / 1phasiger Schalter (gemäß EN 60947) zum Ein- / Ausschalten des MI 3399 vorhanden sein. Am Schalter muss deutlich EIN/AUS gekennzeichnet sein und es muss ersichtlich sein, dass der Schalter für den Application Trainer verwendet wird. Der Nennstrom beträgt 10 A. Um den Application Trainer vollständig vom Stromnetz zu trennen, stellen Sie bitte sicher, dass sich der Schalter in der AUS-Position befindet, wenn er nicht benutzt wird.

Der Application Trainer kann an eine Nennspannung von 230 V und 110 V angeschlossen werden. In beiden Fällen besitzt der MI 3399 die vollen Testmöglichkeiten.

Achtung!

- Die Steckdose, an der der MI 3399 angeschlossen ist, muss geerdet sein, da der Application Trainer auf Spannungsfreiheit zwischen den N- und PE-Leitern prüft. Der Application Trainer wird nur gestartet, wenn die gemessene Spannung unter 25 V liegt, unabhängig davon, ob der MI 3399 in einem 230 V- oder 110 V-System angeschlossen ist.
- Wenn der Application Trainer in Schulen verwendet wird, darf er nur in Gegenwart eines sachkundigen Trainers oder Lehrers benutzt werden, .
- Verwenden Sie nur das beigefügte Originalmaterial (definierte technische Spezifikationen) für die Durchführung der erforderlichen Anschlüsse an der Frontplatte des Application Trainers.
- Verwenden Sie die Teststeckdosen an den Wänden des MI 3399 nur zu Testzwecken und nicht zur Versorgung anderer Lasten (Radio, Herd, Lampe usw.), da die Komponenten innerhalb des Boards (Kabel, Schalter, Kontakte, Widerstände usw.) nur für die Testzwecke ausgelegt sind. Eingesteckte Lasten können zu Fehlfunktionen des MI 3399 Application Trainers führen.

¹ Der 1-Phasen Adapter wird mit einem 10 mA FI-Schutzschalter geliefert.

- Um zusätzliche Lasten oder Instrumente zu versorgen, benutzen Sie den F0 / 1-Ausgang. Dieser Ausgang ist parallel zum Stromnetz und nicht über elektronische Schaltungen angeschlossen.
- Zugängliche Kontakte an einphasigen oder dreiphasigen Steckdosen nicht kurzschließen.
- Wenn das Prüfgerät nicht in der Art und Weise benutzt wird, wie in dieser Bedienungsanleitung vorgeschrieben wird, kann der durch das Prüfgerät bereitgestellte Schutz beeinträchtigt werden!
- Die Wartung und Kalibrierung des Geräts darf nur von kompetenten und befugten Personen durchgeführt werden.
- Beachten Sie alle allgemein bekannten Vorsichtsmaßnahmen, um das Risiko eines Stromschlags beim Umgang mit gefährlichen Spannungen zu vermeiden!

4.2.1 Anschluss an eine 1-Phasen Steckdose

Abbildung 4-1: Anschluss des Application Trainers an eine einphasige Steckdose.

Wenn Sie den MI 3399 Application Trainer an eine 1-phasige Installation anschließen, verwenden Sie unbedingt das Kabel, das mit einer RCD-Schutzbox geliefert wird. Der installierte RCD hat 10 mA. Dies ist ein zusätzlicher Schutz, wenn ein Fehler im System auftritt. Für zusätzliche Fehlersuche haben wir eine zusätzliche Lampe über den L1, L2, L3 Lampen installiert, die anzeigt, dass das System eingeschaltet ist.

Abbildung 4-2: Erklärung der MI 3399 Application Trainer Lampen.

Überprüfen Sie nach dem Anschluss des MI 3399 an die Wandsteckdose, ob die Lampen L1, L2, L3 und die Lampe über L1 eingeschaltet sind. Sie schalten den Application Trainer ein, indem Sie den Schutzschalter unten im Fehlersimulationsboard (4 in Abbildung 4-5: Bestandteile des Application Trainers) einschalten. Wenn der Schalter auf EIN gestellt ist, sollten alle Lampen aufleuchten.

Wenn die Lampen L1, L2, L3 und das Lampe über L1 EIN sind:

• Der MI 3399 Application Trainer ist betriebsbereit.

Wenn die Lampen L1, L2, L3 und die Lampe über L1 AUS sind:

- 1. das System ist entweder nicht über das RCD-Schutzkabel mit dem Stromnetz verbunden, oder der RCD ist AUS-geschaltet oder
- 2. das 3-phasige Kabel ist nicht richtig mit dem RCD-Schutzkabel verbunden oder
- 3. der Schutzschalter unten imr Fehlersimulationsboard ist AUS-geschaltet oder
- 4. hier ist eine Kombination der drei oben genannten Möglichkeiten gleichzeitig vorhanden.

Überprüfen Sie in diesem Fall die Kabel und/oder schalten Sie den Leistungsschalter F1 oder RCD EIN.

Die Lampe über L1 zeigt an, dass das System unter Spannung steht. Wenn nur diese Lampe leuchtet, gehen Sie bitte vorsichtig vor. Beachten Sie, dass Sie durch das RCD-geschützte Kabel geschützt sind.

Wenn nur die Lampe über L1 EIN-geschaltet ist, dann:

- ist es möglich, dass die Leitungen an der 1-phasige Steckdose falsch angeschlossen sind, oder der 1-phasige Stecker nicht richtig eingesteckt ist. Drehen Sie in diesem Fall den Stecker (warten Sie 20 s) und folgen Sie den Anweisungen im Kapitel 4.2.3 Fehlerbehandlung für weitere Informationen
- 2. Die Sicherheitssteuerplatine im MI 3399 Application Trainer funktionierte nicht richtig. In diesem Fall wenden Sie sich bitte an Ihren Händler.

Weitere Informationen zur Fehlerbehebung finden Sie im Kapitel 4.2.3 Fehlerbehandlung.

4.2.2 Anschluss an eine 3-Phasen Steckdose

Abbildung 4-3: Anschluss des Application Trainers an eine 3-phasige Steckdose.

Überprüfen Sie nach dem Anschluss des MI 3399 an die Wandsteckdose, ob die Lampen L1, L2 und L3 EIN-geschaltet sind. Sie schalten den Application Trainer ein, indem Sie den Schutzschalter unten im Fehlersimulationsboard (4 in Abbildung 4-5: Bestandteile des Application Trainers) einschalten. Wenn der Schalter auf EIN gestellt ist, sollten die Lampen L1, L2 und L3 aufleuchten.

Wenn die Lampen L1, L2 und L3 nicht aufleuchten, prüfen Sie Kapitel 4.2.3 Fehlerbehandlung für weitere Informationen.

4.2.3 Fehlerbehandlung

Hinweis: Das Gerät enthält eine spezielle Eingangsschutzschaltung.

Um sicherzustellen, dass die richtigen Pins am Stecker mit den richtigen Leitern (L zu L, N zu N, PE zu PE) verbunden sind, prüft diese Schaltung, ob Spannung zwischen N- und PE-Leitern vorhanden ist, . Die Schaltung entscheidet dies anhand der gemessenen Spannung zwischen N- und PE-Leitern:

- Wenn die gemessene Spannung unter 25 V² liegt, startet der MI 3399. Die Lampen L1, L2, L3 und Lampe über L1 werden eingeschaltet. (Der Schutzschalter an der Unterseite der Fehlerschaltbox muss EIN-geschaltet sein.)
- Wenn die gemessene Spannung **über25 V** liegt, **startet der MI 3399 nicht**. Die Lampen L1, L2 und L3 leuchten nicht. Nur die Lampe über L1 wird EIN-geschaltet. In diesem Fall müssen die Positionen N und L gewechselt werden.
 - Wenn eine 1-Phasen Steckdose verwendet wird, drehen Sie einfach den Stecker.

 $^{^2}$ Beachten Sie, dass die Leitungsimpedanz keine Auswirkungen auf das Ein- / Ausschalten des MI 3399 hat. Dies hat Auswirkungen auf die Messung der Leitungsimpedanz (Z_{Line}), die im Application Trainer durchgeführt wird.

 Falls eine 3-Phasen Steckdose verwendet wird, pr
üfen Sie, ob die Leiter richtig angeschlossen sind. Wenn nicht, reparieren Sie die Wand-Steckdose.

Achtung! Bitte stellen Sie sicher, dass zwischen dem Ausstecken des erneuten Application Trainers dem Einstecken, und aus Sicherheitsgründen mindestens 20 S verbleiben (oder beim Einschalten des Trainers den EIN/Aus-Schalter einschalten).

Wenn der MI 3399 immer noch nicht startet, überprüfen Sie den Rest der Installation, um zu sehen, ob die Leiter L und PE ebenfalls vertauscht sind.

- Bevor Sie grundlegende Änderungen an der Steckdose vornehmen, pr
 üfen Sie zun
 ächst, ob der Schutzschalter an der Unterseite der Fehlerschalterbox EINgeschaltet ist. Wenn nicht, schalten Sie ihn EIN und
 überpr
 üfen Sie die Lampen erneut. Wenn der MI 3399 immer noch nicht funktioniert,
 überpr
 üfen Sie die Installation.
- Die Sicherheitssteuerplatine im MI 3399 Application Trainer funktionierte nicht richtig. In diesem Fall wenden Sie sich bitte an Ihren Händler.

Dies ermöglicht, dass die Schutzschaltung korrekt funktioniert.

4.3 Vorderansicht

Abbildung 4-4: Vorderseite.

4.4 Wesentliche Teile des Application Trainers

Abbildung 4-5: Bestandteile des Application Trainers

Der Application Trainer besteht aus vier Trainingsmodulen und einem Fehlersimulationsboard:

- Elektroinstallationsmodul, das ferner aus den folgenden Untermodulen besteht (das gesamte Modul außer den Teilen 1, 2 und 3):
 - TN/TT-Modul (komplette linke Seite des MI 3399 mit Ausnahme von 1 und 3)
 - IT-Modul (komplette linke Seite des MI 3399 mit Ausnahme von 2), und weiter besteht es aus:
 - o dem medizinische Teil
 - dem Fahrzeugteil (z. B. Feuerwehrautos, Polizeifahrzeuge, ...)
 - Blitzschutzanlage mit vollständigem Blitzableiter (5)
 - Erdungssystem (6).
- Leistungsanalyse Modul (1).
- Modul für die Prüfung von tragbaren Geräten (GT) (2).
- Photovoltaik Modul (3).
- Fehlersimulationsboard (4) mit:
 - Fehlerschalter S1 S33.
 - Leistungsschalter als EIN/AUS-Schalter.
 - TN/TT Schalter

Ein sehr wichtiger Teil des MI 3399 ist das Fehlersimulationsboard (4), in dem Fehlerschalter installiert sind. Hier können die Fehler eingestellt werden:

- Auf dem Elektroinstallationsmodul und seinen Untermodulen (mittlerer Teil von 4).
- Auf dem Leistungsanalyse Modul (oberer Teil von 4).

Ganz unten im Fehlersimulationsboard befinden sich:

- Ein elektrischer Schutzschalter, der zwei Funktionen hat:
- 1. Es schützt den Application Trainer vor Überstromfehlern.
- 2. Er schaltet den Application Trainer (MI 3399) EIN.

Die Position aller RCDs, Sicherungen, Leistungsschalter, Steckdosen und Schalter ist dargestellt in Abbildung 4-6: Position der RCDs, Sicherungen, Leistungsschalter, Steckdosen und Schalter.

Abbildung 4-6: Position der RCDs, Sicherungen, Leistungsschalter, Steckdosen und Schalter.

4.5 Bedeutung der Abkürzungen am MI 3399 Application Trainer

3-Phasen, 1 - Phase F 0 / 1 3-pin / 12V	Netzstecker Direktsteckdosen Ladebuchsen
SB 1/2 SB 3 LPS	Erdungssysteme TN/TT IT Erdung / Besondere Standorte Blitzschutzanlage System
F 0/1 Ausgang	Bypass-Steckdose - parallel zum Stromnetz und nicht über elektronische Stromkreise zur Versorgung verschiedener
F 1/2	Dreiphasen-Steckdose nur zu Testzwecken und nicht
F 1/3 2/2 3/1 3/2	Einphasen-Steckdose nur zu Testzwecken und nicht zur Versorgung verschiedener Lasten!
F 1/4 UTP	Beleuchtung LAN-Buchsen zum Testen von Kommunikationsnetzwerkparametern, Fehlern, Störungen und Abständen zu Störungen und Übersprechen.
N-PE	TN/TT Schalter Geöffnet / Geschlossen, um reale Bedingungen an beiden Arten von Erdungssystemen zu simulieren
Rohrleitungen	Rohrleitungen für Wasser, Gas und Heizungssysteme werden über Schalter und Widerstände mit dem MPE verbunden, um so die Sicherheitsbedingungen in der Nähe
Überspannungsschutz für Gasleitungen	Die Gasleitung hat einen Isolator zwischen Hausanschluss- Leitung und In-Hausleitung. Der Überspannungsschutz zeigt ein gutes Beispiel, um das System bei einem Blitzschlag sicher zu machen.
MPE	Hauptpotentialausgleich
•	Re Hilfserder 1 (Innerer Ring) Re Hilfserder 2 (Innerer Ring)
•	Ro Strom Erdspieß 1 (Äußerer Ring) E Ro Potential Erdspieß 1 (Äußerer Ring) ES Ro Potential Erdspieß 2 (Äußerer Ring) S Ro Stromsensor 2 (Äußerer Ring) H

4.6 Einstellung der Parameter des Application Trainers

Die Werte der Messparameter sind für die Schalter-Positionen **EIN** und **AUS** , in der folgenden Tabellen aufgeführt.

Exercises	Switch	Function	Site of error	ON	OFF
	S1	Dip		138 V dip, 5 periods long each 10 seconds	
	S2	Swell		276 V swell 5 periods long each 10 seconds	
	S3	Interrupt		0 V interrupt 5 periods long each 10 seconds	z
	S4	Capacitive load & energy		capacitive switching,	orma
Powe	S5	Harmonics	Output on I conne	Voltage harmonics: 3rd harmonic:5%, 5th harmonic: 5%, 7th harmonic: 5% Current harmonics: 3rd harmonic:15%, 5th harmonic: 15%, 7th harmonic: 15%	l 3-phase system sinu
r simulator	S6	Unbalance	⁹ ower Simulator action plate	U1 = 240 V, U2 = 230 V, U3 = 220 V, I1 = 900 A, I2 = 1000 A, I3 = 1100 A	soidal shape, in
	S7	Flicker		Pst _{U1} = 1, Pst _{U1} = 1.5, Pst _{U1} = 1.8	ductive ch
	S 8	Inrush		1700 A 200 msec duration, every 10 second	aracter
	S9	Transient		420 Vpk, length < 3 msec, every 10 sec	
	S10	Phase (switch) failure		L2 and L3 interchanged	
	S11	Wrong instrument connection		Voltage, Current, Power, frequency phase angle sequence	

Tabelle 4.-2: Liste der Parametereinstellungen am Application Trainer (Teil 1).

Exercises	Switch	Function	Site of error	ON	OFF
Line	S12	ZLINE	TN/TT F1/2 L3/N outlet (3-ph.)	> 10 Ω	<2Ω
Impeda	S13	ZLINE	TN/TT F2/2 L1/N outlet	> 10 Ω	<2Ω
ance	S14	ZLINE	TN/TT F1/3 L1/N outlet	> 10 Ω	<2Ω
	S15	R LOW / IMD	Π F3/2 PE outlet	> 20 Ω	<1Ω
σ	S16	ISFL / IMD	IT F3/2 ISFL	approx. 6 mA (@ 230 V) approx. 3 mA (@ 115 V)	< 1.3 mA
m	S17	RLOW	IT PE ref.	approx. 3.3 Ω	< 1 Ω
Conne	S18	RLOW	TN/TT F1/4 PE light	> 20 Ω	<1Ω
ection	S19	R LOW / Z LOOP	TN/TT F1/2 PE outlet (3-ph.)	approx. 3.4 Ω	<1Ω
	S20	R LOW / Z LOOP	TN/TT F2/2 PE outlet	> 2.3 Ω	< 2 Ω
	S21	RLOW	MPE / PE Gas	approx. 2.2 Ω	<1Ω
	S22	RLOW	MPE / PE Heat inst.	approx. 3.3 Ω	<1 Ω
	S23	R _E (classic method 3w)	Basic grounding in TT ●	approx. 3.3 Ω	approx. 2.6 Ω
Earth Re	S23 + S24	R _E (classic method 3w)	Basic grounding in TT ●	approx. 9.8 Ω	approx. 2.6 Ω
sistance F		R _E (classic method 3w)	Basic grounding in TT ●	approx. 4.8 Ω	approx. 2.6 Ω
کر ۳	S24	R _E (2 - clamps method)	Basic grounding in TN (on Main PE wire) Lightning rod 1 Lightning rod 2	approx. 10 Ω approx. 100 Ω approx. 10 Ω	approx. 3.6 Ω approx. 4.7 Ω approx. 10 Ω
7	S25	RO (resistivity 4w)		P≈12	
Ū	S26	RO (resistivity 4w)		5Ωm 2 10 7 12	
	S27	R _{ISO}	IT F3/1 L1/L2 outlet	approx. 0.45 MΩ	> 200 MΩ
_	S28	ISFL / IMD	IT F3/1 L2/PE outlet	approx. 3 mA	< 1 mA
nsulatior	S29	R _{ISO} / I _Δ	TN/TT F2/2 L1/PE outlet	approx. 0.05 MΩ approx. 5.1 mA (@230 V) approx. 2.5 mA (@115 V)	> 200 MΩ < 3.5 mA
n resi	S 30	R _{ISO}	TN/TT F2/2 L1/PE outlet	capacitive 0.45 MΩ	> 200 MΩ
stance	S31	R _{ISO} / VARISTOR	TN/TT SPD GAS / PE	shorted	U _{SPD} approx. 150 V
U	<mark>S32</mark>	R _{ISO}	TN/TT F1/2 L2/N outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ
	S33	R _{ISO}	TN/TT F1/2 L1/L2 outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ

Tabelle 4.-3: Liste der Parametereinstellungen am Application Trainer (Teil 2).

Exercises	Switch	Function	Site of error	ON	OFF
		Loose contact of PE conductor	Error value	0.84 Ω	0.02 Ω
	Err1	Earthed metal part (2) and PE pin on socket (3)	Earth Bond	0.84 Ω	0.02 Ω
		Insulation fault	Error value	106 kΩ	>20 MΩ
	Err2		Insulation 500 V DC	0.106 ΜΩ	>20 MΩ
		L and PE pins on socket (3)	Leakage 230 V, 50 Hz	2.17 mA	0.00 mA
			Subleakage	2.17 mA	0.00 mA
		Excessive capacitive current	Error value	33 nF	/
	Err3		Insulation 500 V DC	> 20 MΩ	> 20 MΩ
т		L and PE pins on socket (3)	Leakage 230 V, 50 Hz	2.12 mA	0.00 mA
lec			Subleakage	2.12 mA	0.00 mA
î		Insulation fault	Error value	238 kΩ	> 20 MΩ
cal	Frr4	Accessible isolated metal part	Insulation 500 V DC	0.238 MΩ	> 20 MΩ
П		(1) and L nin on socket (3)	Touch Leakage 230 V	0.97 mA	0.00 mA
			Subleakage	0.97 mA	0.00 mA
pm	Err5	Functional fault	Functional	interruptions	/
ien		Functional	Functional	interruptions	/
ts	Err6	Crossed L and N wire	Polarity	L, N crossed	/
afe		Polarity	Polarity	L, N crossed	/
ŧy		Insulation fault	Error value	238 kΩ	30 MΩ
	Err7	lealated accessible motal next	Insulation 500 V DC (probe)	0.237 MΩ	13 MΩ
		(2) and L pip ap apply (2)	Touch Leakage 230 V AC	0.97 mA	0.00 mA
		(3) and L, phron socket (2)	Subleakage (probe)	0,97 mA	0.00 mA
		Insulation fault	Error value	1.88 MΩ	> 20 MΩ
	Err8	L (3) and PE (4) input	Insulation 1000 V DC	1.880 MΩ	> 20 MΩ
	Err9	connections	Withstanding 1000 V AC	0.6 mA	0.1 mA
		Excessive charge on filter		100 nF	4.7 nF
	-	capacitors	Error value	100 MΩ	100 MΩ
	Err9	L and N on input connection (3)	Discharging time	cca. 9 sec	cca 0.4 sec

* Err buttons position selected according to the selected equipment simulator.

Tabelle 4.-4: Liste der Parametereinstellungen am Application Trainer (Teil 3).

5 Wartung

5.1 Reinigung

Verwenden Sie ein weiches Tuch, das leicht mit Seifenwasser oder Alkohol angefeuchtet ist, um die Oberfläche des **Application Trainers** zu reinigen und lassen Sie die Oberfläche vollständig trocknen, bevor Sie ihn wieder benutzen.

Verwenden Sie keine Flüssigkeiten auf der Basis von Benzin oder Kohlenwasserstoffen!

Gießen Sie keine Reinigungsflüssigkeit über den Application Trainer!

5.2 Kundendienst

Im Falle einer Fehlfunktion eines Boards oder wenn am Board Schäden festgestellt werden, muss das Board von einer kompetenten Serviceabteilung gewartet werden. Wenden Sie sich für weitere Informationen an Ihren Händler oder den Hersteller des Boards.

Beim Auswechseln der Glühlampe im MI 3399 Application Trainer muss die MI 3399 vollständig vom Netz getrennt werden, entweder durch Abtrennen des RCD am Netzkabel oder durch AUS-schalten des im Kapitel 4.2 Anschluss an die Netzspannung beschriebenen Schutzschalters

Kontaktdaten des Herstellers:

Adresse:	Metrel d.d. Ljubljanska 77, SI-1354 Horjul Slovenja, Europe
Tel.:	+386 1 755 82 00
Fax:	+386 1 754 92 26
URL:	http://www.metrel.si
E-mail:	metrel@metrel.si

|--|

AD 1 – MI 3399 EIS Elektrische Anlagen Safety Trainer

INHALTSVERZEICHNIS

1 Gru	undlegende Theorie über Sicherheit und Messungen von	
Nieders	pannungsinstallationen	37
1.1	TN System	37
1.1.1	1 TN-S System	37
1.1.2	2 TN-C System	38
1.1.3	3 TN-C-S System	39
1.2	TT System	40
1.3	IT System	41
1.4	Gewährleistung der Sicherheit	42
1.4.:	1 Leitungsimpedanz	42
1.4.2	2 Fehlerschleifenimpedanz	43
1.4.3	3 Vergleichsleitung und Fehlerschleifenimpedanzen	44
1.4.4	4 RCD	45
1	.4.4.1 RCD Prüfung der Auslösezeit	46
1	.4.4.2 RCD Prüfung des Auslösestroms	46
1	.4.4.3 RCD Prüfung der Auslöse-Berührungsspannung	46
1.4.	5 Erdungswiderstand und Berührungsspannung	47
1.4.0	6 Isolation	48
1.4.	7 Durchgang	48
2 Me	ssungen an elektrischen Anlagen in der Praxis	49
2.1	Allgemeine Einstellungen des Instruments	49
• • •	Massung das Laitungsimpodanz	E1
2.2	Messung des Leitungsimpedanz	3 1
2.2.	1 Initergrund der Messungen	55
2.2	2 2 1 Kurzschlussleitung - Neutralleiter Imnedanz und unheeinflusster Kurzschlussstrom	55 54
2	 Kurzschlussleitung - Leitungsimnedanz und Kurzschlussstrom 	55
2	2223 Snannungsahfall	56
2.2.3	3 Übungen	57
2	2.3.1 Übung Nr. 2.2-1: dU. 7 IN und Ik Messung auf der Versorgungsseite	57
-	Messen der Verbindungstopologie	57
	Messverfahren	57
	Erwartete Ergebnisse	59
	Erwartete Ergebnisse mit einem simulierten Fehler	59
2		60
	Messen der Verbindungstopologie	60
	Messverfahren	60
	Erwartete Ergebnisse	62
	Erwartete Ergebnisse mit einem simulierten Fehler	63
2	.2.3.3 Übung Nr. 2.2-3: dU, Z _{L-N} und I _k Messung auf der Steckdosenseite in einem IT	
E	rdungssystem	64
	Messverfahren	64
	Erwartete Ergebnisse	66
	Erwartete Ergebnisse mit einem simulierten Fehler	66
2.3	Messung Fehlerschleifenimpedanz	67
2.3.3	1 Hintergrund der Messungen	68
2	.3.1.1 Fehlerschleife, Fehlerimpedanz und Kurzschlussstrom in TN Systemen	68
2	.3.1.2 Fehlerschleife, Fehlerimpedanz und Kurzschlussstrom in TT Systemen	69

2.	3.1.3	Fehlerschleife, Fehlerimpedanz und Kurzschlussstrom in RCD geschützten TN und T	Т
	stemen	70	70
2.3.2		ühung Na 2 2 1 7	72
Ζ.	3.2.1	Obung Nr. 2.3-1: ZL-PE und Ik Wessung auf der Versorgungsseite	12
	Nessen	der Verbindungstopologie	
	Nessvei	Tanren	
	Erwarte	te Ergebnisse	
	Erwarte	te Ergebnisse mit einem simulierten Fenier	
2.	3.2.2	Ubung Nr. 2.3-2: ZL-PE und IPFC Messung auf der Steckdosenseite – RCD geschutzt	
	Messen	der Verbindungstopologie	
	Messvei	Tahren	
	Erwarte	te Ergebnisse	
	Erwarte	te Ergebnisse mit einem simulierten Fehler	78
2.4	Messe	n des RCD Parameter	81
2.4.1	Hinte	rgrund der Messung	81
2.	4.1.1	Funktion eines RCD	82
2.4.2	Übur	gen	84
2.	4.2.1	Übung Nr. 2.4-1: RCD Auslösezeit, Strom- und Berührungsspannungsmessung	84
	Messen	der Verbindungstopologie	84
	Messver	fahren	84
	Erwarte	te Ergebnisse	85
	Erwarte	te Ergebnisse mit einem simulierten Fehler	87
2.	4.2.2	Übung Nr. 2.4-2: RCD Auslösezeit, Strom- und Berührungsspannungsmessung in eir	nem IT
Er	dungssys	tem	87
	Messver	fahren	87
	Frwarte	to Ergobnisso	80
	Limarce		
2.5	Isolati 90	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ	men
2.5	Isolati 90 Hinte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ	men
2.5 2.5.1 2.	Isolati 90 Hinte 5.1.1	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung Einzelfehlerableitstrom (I _{SFL})	men
2.5 2.5.1 2. 2.	Isolati 90 Hinte 5.1.1 5.1.2	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rrgrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD)	men
2.5.1 2.5.1 2. 2.5.2	Isolati 90 Hinte 5.1.1 5.1.2 Übur	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) Igen	men 90 90 91 91
2.5 2.5.1 2. 2. 2.5.2 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rrgrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL})	men 90 90 91 91 91
2.5.1 2.5.1 2. 2.5.2 2.5.2 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ ergrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren	men 90 90 91 91 91 91
2.5.1 2.5.1 2. 2.5.2 2.5.2 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ ergrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren	men 90 90 91 91 91 91 91 91 91 92
2.5.1 2.5.1 2. 2.5.2 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rrgrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (IsFL) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler	men 90 90 91 91 91 91 91 92 92
2.5 .1 2.5.1 2. 2.5.2 2. 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rrgrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD)	men 90 90 91 91 91 91 92 92 92
2.5.1 2.5.1 2. 2.5.2 2. 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ Firgrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren	men 90 90 91 91 91 91 91 92 92 94 94
2.5.1 2.5.2 2.5.2 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ Firgrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren te Ergebnisse	men 90 90 91 91 91 91 91 92 92 92 92 94 94 94 94
2.5.1 2. 2. 2.5.2 2. 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver 5.2.2 Messver Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ ergrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren te Ergebnisse Ubung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren E Ergebnisse te Ergebnisse te Ergebnisse	men 90 90 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 95
2.5.1 2.5.2 2.5.2 2. 2. 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte Erwarte Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ ergrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren te Ergebnisse mit einem simulierten Fehler Dung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler	men 90 90 91 91 91 91 91 91 92 92 94 94 94 95 97
 2.5.1 2.5.2 2.5.2 2. 2. 2.6.1 	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte Erwarte Erwarte Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ Figrund der Messung Einzelfehlerableitstrom (I _{SFL}) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (I _{SFL}) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Tonswiderstandsmessung	men 90 90 91 91 91 91 91 92 92 92 92 94 94 94 94 95 95 98
2.5.1 2.5.2 2.5.2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ ergrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD)	men 90 90 91 91 91 91 91 92 92 92 92 94 94 94 94 94 94 94 94 95 95 98 99
2.5.1 2.5.1 2. 2.5.2 2. 2. 2. 2. 2. 2. 2. 6.1 2.6.1 2.6.2	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (IsFL) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler onswiderstandsmessung Irgrund der Messung Isolationswiderstand einzelner Stromkreise / Anlagenteile Isolationswiderstand einzelner Stromkreise / Anlagenteile	men 90 90 91 91 91 91 91 92 92 92 92 94 94 94 94 94 94 94 94 95 95 98 99 99
2.5.1 2.5.2 2.5.2 2. 2. 2. 2. 2. 2. 2. 6.1 2.6.1 2. 2.6.2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD) igen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (IsFL) fahren te Ergebnisse te Indefendent Öbung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren te Ergebnisse te Ergebnisse te Ergebnisse te Ergebnisse te Ergebnisse mit einem simulierten Fehler. onswiderstandsmessung urgrund der Messung Isolationswiderstand einzelner Stromkreise / Anlagenteile igen Übung Nr. 2.6-1: Riso in einer 1-phasigen Steckdose in einem TN/TT System	men 90 90 91 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 94 94 94 94 94 94 94 94
2.5.1 2.5.1 2. 2.5.2 2. 2. 2. 2. 2. 2. 2. 6.1 2.6.1 2. 2.6.2 2. 2.	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte Erwarte Erwarte Erwarte Erwarte Isolati Hinte 6.1.1 Übur 6.2.1 Messver	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ orgrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD) igen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (IsFL) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler. onswiderstandsmessung Isolationswiderstand einzelner Stromkreise / Anlagenteile gen Übung Nr. 2.6-1: Riso in einer 1-phasigen Steckdose in einem TN/TT System	men 90 90 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 95 97 98 99 98 99 91
2.5.1 2.5.1 2. 2.5.2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte Erwarte Erwarte Erwarte Erwarte Isolati Hinte 6.1.1 Übur 6.2.1 Messver Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ orgrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD) igen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (IsFL) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler. onswiderstandsmessung Isolationswiderstand einzelner Stromkreise / Anlagenteile igen Übung Nr. 2.6-1: R _{ISO} in einer 1-phasigen Steckdose in einem TN/TT System fahren te Ergebnisse	men 90 90 91 91 91 91 91 91 92 92 92 92 92 94 94 94 94 95 94 94 95 94 94 95 94 94 95 94 94 95 99 99 99 100 100 100
2.5.1 2.5.2 2.5.2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte Erwarte 6.1.1 Übur 6.2.1 Messver Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ orgrund der Messung	men 90 90 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 95 97 98 99 97 98 99 91 00 100 100
 2.5.1 2.5.2 2.5.2 2. 2.6 2.6.1 2.6.2 2. 2. 	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte 5.2.2 Messver Erwarte 5.2.2 Messver Erwarte 6.1.1 Übur 6.2.1 Messver Erwarte 6.2.2	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rrgrund der Messung	men 90 90 91 91 91 91 91 91 92 92 92 92 92 94 94 94 94 94 94 94 94 94 95 94 94 94 94 94 94 94 94 94 94 94 95 99 100 100 100 100 101 102
 2.5.1 2.5.2 2.5.2 2.5.2 2. 2.6.1 2.6.2 2.6.2 2. 2. 	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte Erwarte 5.2.2 Messver Erwarte Bisolati Hinte 6.1.1 Übur 6.2.1 Messver Erwarte Erwarte 6.2.2 Messver Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung Einzelfehlerableitstrom (IsFL) Isolationsüberwachungsgerät (IMD) gen Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (IsFL) fahren te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD) fahren te Ergebnisse usolationswiderstandsmessung Isolationswiderstand einzelner Stromkreise / Anlagenteile gen Übung Nr. 2.6-1: R _{ISO} in einer 1-phasigen Steckdose in einem TN/TT System fahren te Ergebnisse te Ergebnisse te Ergebnisse te Ergebnisse te Ergebnisse mit einem simulierten Fehler Übung Nr. 2.6-2: R _{ISO} in einem 3-phasigen TN/TT System auf der Versorgungsseite	men 90 90 91 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 94 94 94 94 94 94 94 94
 2.5.1 2.5.2 2.5.2 2. 2.6.1 2.6.2 2. 3. 3. 3. 4. 4.<td>Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte Erwarte 5.2.2 Messver Erwarte 6.1.1 Übur 6.2.1 Messver Erwarte Erwarte 6.2.2 Messver Erwarte Erwarte</td><td>onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung</td><td>men 90 90 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 95 94 94 95 94 94 94 94 94 94 94 94 94 94 94 94 94</td>	Isolati 90 Hinte 5.1.1 5.1.2 Übur 5.2.1 Messver Erwarte Erwarte 5.2.2 Messver Erwarte 6.1.1 Übur 6.2.1 Messver Erwarte Erwarte 6.2.2 Messver Erwarte Erwarte	onsüberwachungsgeräte und Messung von Einzelfehlerableitströ rgrund der Messung	men 90 90 91 91 91 91 91 91 92 92 92 92 94 94 94 94 94 95 94 94 95 94 94 94 94 94 94 94 94 94 94 94 94 94

Frwarte	te Frgehnisse mit einem simulierten Fehler	103
2.6.2.3	Übung Nr. 2.6-3: Riso in einem IT System	
Messve	rfahren	
Erwarte	te Ergebnisse	105
Erwarte	te Ergebnisse mit einem simulierten Fehler	105
2.6.2.4	Übung Nr. 2.6-4: R _{ISO} Varistor Prüfung	106
Messve	rfahren	106
Erwarte	te Ergebnisse	107
Erwarte	te Ergebnisse mit einem simulierten Fehler	108
2.7 Durch	gangsprüfung von Leitern	110
2.7.1 Hint	ergrund der Messung	111
2.7.2 Übu	1gen	112
2.7.2.1	Übung Nr. 2.7-1: Durchgangsprüfung in einem TN/TT System	112
Messve	rfahren	112
Erwarte	te Ergebnisse	113
Erwarte	te Ergebnisse mit einem simulierten Fehler	114
2.7.2.2	Übung Nr. 2.7-2: Messung von R _{PE} Durchgang in einem TN/TT System	115
Messve	rfahren	115
E ra vort		
Erwarte	te Ergebnisse	115
Erwarte	ete Ergebnisse Ste Ergebnisse mit einem simulierten Fehler	115 116
Erwarte 2.8 Erdur	ite Ergebnisse Ite Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen	
Erwarte Erwarte 2.8 Erdur 2.8.1 Hint	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen ergrund der Messung	
2.8 Erdur 2.8.1 Hint 2.8.1.1	ergrund der Messung Haupterdung	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen ergrund der Messung Haupterdung Blitzschutzsysteme	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen ergrund der Messung Haupterdung Blitzschutzsysteme Erdschleifenprüfung, externe Quelle, keine Erdspieße	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen ergrund der Messung Haupterdung Blitzschutzsysteme Erdschleifenprüfung, externe Quelle, keine Erdspieße 3-Draht Prüfung des Erdungswiderstands, interner Generator, zwei Erdspieße	
2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen ergrund der Messung Haupterdung Blitzschutzsysteme Erdschleifenprüfung, externe Quelle, keine Erdspieße 3-Draht Prüfung des Erdungswiderstands, interner Generator, zwei Erdspieße nalität und Platzierung von Erdspießen	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic 2.8.1.5	ite Ergebnisse ete Ergebnisse mit einem simulierten Fehler gswiderstandsmessungen ergrund der Messung Haupterdung Blitzschutzsysteme Erdschleifenprüfung, externe Quelle, keine Erdspieße 3-Draht Prüfung des Erdungswiderstands, interner Generator, zwei Erdspieße nalität und Platzierung von Erdspießen Erdungswiderstandsprüfung mit zwei Stromzangen	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic 2.8.1.5 2.8.2 Übu	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic 2.8.1.5 2.8.2 Übu 2.8.2.1	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic 2.8.1.5 2.8.2 Übu 2.8.2.1 Messve	ite Ergebnisse ite Ergebnisse mit einem simulierten Fehler	
2.8.1 Hint 2.8.1.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktio 2.8.1.5 2.8.2 Übu 2.8.2.1 Messve Erwarte	ete Ergebnisse	
2.8.1 Hint 2.8.1.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic 2.8.1.5 2.8.2 Übu 2.8.2.1 Messve Erwarte	<pre>ite Ergebnisse</pre>	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.4 Funktic 2.8.1.5 2.8.2 Übu 2.8.2.1 Messve Erwarte 2.8.2.2	<pre>ste Ergebnisse</pre>	
2.8 Erdur 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.3 2.8.1.4 Funktic 2.8.2 Übu 2.8.2.1 Messve Erwarte 2.8.2.2 Messve	<pre>ite Ergebnisse</pre>	
2.8.1 Hint 2.8.1 Hint 2.8.1.1 2.8.1.2 2.8.1.3 2.8.1.3 2.8.1.4 Funktio 2.8.1.5 2.8.2 Übu 2.8.2.1 Messve Erwarte 2.8.2.2 Messve	<pre>ite Ergebnisse</pre>	

ABBILDUNGSSVERZEICHNIS

Abbildung 1-1: TN-S System	37
Abbildung 1-2: TN-C System	38
Abbildung 1-3: TN-C-S System	39
Abbildung 1-4: TT System	40
Abbildung 1-5: IT System	41
Abbildung 1-6: Leitungsimpedanzmessung (ZLN) - Standardmethode	42
Abbildung 1-7: Schleifenimpedanzmessung - Standardmethode	43
Abbildung 2-1: Schaubild für Leitungsimpedanzmessungen	51
Abbildung 2-2: Messen von ZLine im Application Trainer mit dem Schuko Command	er
	52
Abbildung 2-3: Messen von ZLine im Verteiler des Application Trainers mit Kabeln 8	52

Abbildung 2-4: Messen von Z _{Line} im Application Trainer mit dem Schuko Commander
Abbildung 2-5: Kurzschlussstrom zwischen Leiter und Neutralleiter
Abbildung 2-6: Kurzschlussstrom zwischen zwei Phasenleitern
Abbildung 2-7: Topologie in einem 1-phasigen TN System auf der Versorgungsseite 57
Abbildung 2-8: Topologie in einem 3-phasigen TN-System auf der Ausgangsseite . 60
Abbildung 2-9: Simulierter Fehler bei einem 3-phasigen TN oder TT System
Abbildung 2-10: Schaubild für die Messung der Fehlerschleifenimpedanz - TN- System
Abbildung 2-11: Schaubild für die Messung der Fehlerschleifenimpedanz - TT-
Abbildung 2-12: Messung von Zloop im Verteiler von Application Trainer mit Kabeln
auf der Versorgungsseite (vor dem RCD)
Abbildung 2-13: Messung Z _{Loop} im Application Trainer mit dem Schuko Commander
Abbildung 2-14: Fehlerschleife im 1-Phasen TN System 69
Abbildung 2-15: Fehlerschleife im TTSystem
Abbildung 2-16: Schleifenimpedanzmessung in einem RCD-geschützten System 71
Abbildung 2-17: Topologie in einem 1-phasigen TN-System auf der Versorgungsseite
Abbildung 2-18: Topologie in einem 1-phasigen TN System auf der Schaltungsseite
Abbildung 2-19: Topologie in einem 3-phasigen TN System auf der Schaltungsseite
Abbildung 2-20: Simulierter Fehler am Schutzleiter in einem 1-phasigen TN System
Abbildung 2-21: Simulierte Febler auf dem Leiter 80
Abbildung 2-21. Schaubild für Leitungsimpedanzmessungen
Abbildung 2-23: Schaubild für die Messung der Fehlerschleifenimpedanz - TT-
System
Abbildung 2-24: RCD Messung im Verteiler des Application Trainers mit Kabeln auf
der Versorgungsseite
Abbildung 2-25: RCD Messung im Application Trainer mit dem Schuko Commander
Abbildung 2 26: PCD Massung in ainom IT Erdungssystem
Abbildung 2-20: RCD Messung in einem 1-phasigen TT System 84
Abbildung 2-28: Schaubild für IMD und Einzelfehler Ableitstrommessungen
Abbildung 2-29: Messen von IsFL und IMD in einem IT System
Abbildung 2-30: ISFL simuliert Fehler in einem IT System
Abbildung 2-31: IMD simulierter Fehler in einem IT System
Abbildung 2-32: Schaubild für Isolationswiderstandsmessungen
Abbildung 2-33: Isolationswiderstandsmessung am Verteiler - alle Stromkreise
eingeschaltet
Stromkreise während der Messung
Abbildung 2-35: Isolationsprüfung wird am Verteiler und Steckdose durchgeführt 99

Abbildung 2-36: R _{ISO} simulierter Fehler zwischen Phasen- und PE-Leitern
Abbildung 2-39: Isolationswiderstandsmessung am \/aristor 107
Abbildung 2-00: Ricc simulierter Febler in der Varistorverkabelung
Abbildung 2-40: Niso simulerter remer in der Vanstorverkabelding
Abbildung 2-41: Schaublid für Dürchgangsprüfungen
Stockdoop
Abbildung 2,42: Durchgengenrüfung zwischen Verteiler und Steeldese
Abbildung 2-43. Durchgangsprulung zwischen Verteiler und Steckdose
Abbildung 2-44. Standard Durchgangsprulung
Abbildung 2-45: Simulierter Durchgangsfehler
Abbildung 2-46: Simulerter Durchgangstenier
Abbildung 2-47: Schaublid für Erdungswiderstandsmessungen
Abbildung 2-48: Erdungswiderstandsmessung mit der 3-Leiter-Methode
Abbildung 2-49: Erdungswiderstandsmessung in einem TT-System mit der 2-
Zangen-Methode
Abbildung 2-50: Prufung der Blitzschutzanlage
Abbildung 2-51: Zweidrahtprüfung (nur für TT Systeme) keine Erdspielse
Abbildung 2-52: Gesamterdungsmessung (3-Draht) – Standardmethode
Abbildung 2-53: Selektive Erdungsmessung – Standardmethode
Abbildung 2-54: Drei-Drahtprüfung, zwei Erdspieße und gleichseitige Platzierung der
Erdspieße 122
Abbildung 2-55: Gleichseitige Platzierung der Erdspieße 122
Abbildung 2-56: Gesamterdungswiderstandsmessung mit zwei Stromzangen 123
Abbildung 2-57: Prüfsystem (einzelne Erdungsstäbe) mit zwei Stromzangen 124
Abbildung 2-58: Messung des Widerstands eines Objekts zu Erde mit zwei
Stromzangen in einem TN System 125
Abbildung 2-59: Simulierte Erdungswiderstands-Fehler
Abbildung 2-60: Simulierter Erdungswiderstandsfehler in einem TN Erdungssystem

TABELLENVERZEICHNIS

Tabelle 1-1: Maximal zulässigen Fehlerschleifenimpedanzen bei den ve	rwendeten
Schmelzsicherungen Typ B, C und gG	45
Tabelle 1-2: Auslösezeiten der Sicherungen	45
Tabelle 1-3: Auslösezeiten gemäß IEC 60364-4-41	46
Tabelle 14: Auslösezeiten gemäß IEC/TR 60755	46
Tabelle 15: Maximal zulässige Erdungswiderstandswerte (Z _{L-PE})	für RCD
geschützte Installationen	47
Tabelle 2-1: Tabelle Nennspannungsbereich	56
Tabelle 22: Grenzwerte Isolationswiderstand	98

1 Grundlegende Theorie über Sicherheit und Messungen von Niederspannungsinstallationen

In diesem Kapitel wird die grundlegende Theorie beschrieben, die für den erfolgreichen Abschluss von Übungen benötigt wird.

Für eine detailliertere theoretische Erklärung lesen Sie bitte das Metrel Handbuch Leitfaden zum Prüfen und Überprüfen von Niederspannungsanlagen.

Für eine detailliertere Erklärung, wie Sie eine bestimmte Geräteeinstellung auffinden, lesen Sie bitte die entsprechende Bedienungsanleitung des verwendeten Geräts.

1.1 TN System

Ein TN-System ist an der Stromquelle und/oder an den Verteilungspunkten geerdet. Frei liegende leitende Teile sind über PE- oder PEN-Leiter mit den Punkten verbunden (geerdet). Der PEN-Leiter dient gleichzeitig als Versorgungs- und Schutzleiter. Alle Phasenleiter sind mit Sicherungen geschützt.

1.1.1 TN-S System

Abbildung 1-1: TN-S System

In TN-S-Netzen (S = separiert) sind der PE- und der N-Leiter (falls vorhanden) voneinander getrennt. Der PE-Leiter dient nur zu Schutzzwecken.

Alle Phasenleiter sind mit Sicherungen geschützt. Das System kann einen zusätzlichen RCD-Schutz enthalten. Der Erdungswiderstand ist normalerweise niedrig genug aufgrund des niedrigen Widerstands des Schutzleiters (PE) und guter Erdung an der Quelle und den Verteilungspunkten.

1.1.2 TN-C System

Abbildung 1-2: TN-C System

Das TN-C-Netz (C = common – gemeinsam) enthält einen gemeinsamen PEN-Leiter für das gesamte Stromversorgungsnetz. Der PEN-Leiter dient zu Schutzzwecken und führt Lastströme.

Alle Phasenleiter sind mit Sicherungen geschützt. Der Erdungswiderstand ist normalerweise niedrig genug aufgrund des niedrigen Widerstands des Schutzleiters (PE) und guter Erdung an der Quelle und den Verteilungspunkten. Ein zusätzlicher RCD-Schutz wäre nicht wirksam.

1.1.3 TN-C-S System

Abbildung 1-3: TN-C-S System

In TN-C-S-Netzen sind freiliegende leitende Teile teilweise mit dem PE-Leiter und teilweise mit dem PEN-Leiter verbunden.

Alle Phasenleiter sind mit Sicherungen geschützt. Der Erdungswiderstand ist normalerweise niedrig genug aufgrund des niedrigen Widerstands des PEN- und PE-Leiters und guter Erdung an der Quelle und den Verteilungspunkten. Ein zusätzlicher RCD-Schutz kann angewandt werden, wo N- und PE-Leiter voneinander getrennt sind.

Die Leitungsimpedanz und Schleifenimpedanz kann einfach an jedem Ende des Netzes gemessen werden:

Leitungsimpedanz in einem TN System:

ZLine = ZLine Leiter + ZTransformator + ZNeutral Leiter + ZLokaler Neutralleiter

• Schleifenimpedanz in einem TN System:

ZLoop = ZLine Leiter + ZTransformator + ZNeutral Leiter + ZLokaler PE Leiter

Wenn der Durchgang für alle Leitungen - Leiter, Neutralleiter und PE - gut ist, sind die Leitungsimpedanz und Schleifenimpedanz im TN-System grundsätzlich gleich.

1.2 TT System

Im TT-System sind alle zugänglichen Metallteile über den Schutzleiter PE mit dem Erdungssystem des Gebäudes verbunden. Die Sicherheitsbedingungen werden durch Messen des Erdungswiderstands RE überprüft.

Abbildung 1-4: TT System

Die Fehlerschleifenimpedanz in einem TT-System besteht aus folgenden Teilimpedanzen:

- Impedanz der Sekundärseite des Leistungstransformators.
- Phasenleiterimpedanz vom Leistungstransformator zur Fehlerstelle.
- Schutzleiterimpedanz von der Fehlerstelle zur Erdungselektrode.
- Erdungswiderstand R_E.
- Ausbreitungswiderstand von der Erdungselektrode R_E zum Leistungstransformator.
- Widerstand des Erdungssystems des Leistungstransformators Ro.

Die Leitungsimpedanz und Schleifenimpedanz kann einfach an jedem Ende des Netzes gemessen werden:

• Leitungsimpedanz in einem TT System:

ZLine = ZLine Leiter + ZTransformator + ZNeutral Leiter + ZLokaler Neutralleiter

• Schleifenimpedanz in einem TT System:

ZLoop = ZLine Leiter + ZTransformator + RO Transformator Erdung + RErdung des Objekts + ZLokaler PE Leiter

Die Leitungsimpedanz im TT-System ist viel niedriger als die Schleifenimpedanz, da der Fehlerschleifenstrom durch die Erde fließt.

1.3 IT System

Beim IT-Netz ist der Versorgungsteil der Energiequelle von der Erde getrennt oder über eine ausreichend hohe Impedanz an der Quelle geerdet. Frei liegende leitende Teile sind eigenständig geerdet oder mit dem PE-Leiter verbunden und örtlich am Eintritt in die Anlage geerdet.

Abbildung 1-5: IT System

Die Fehlerschleifenimpedanz in IT-Systemen ist nicht in Funktion, bis ein erster Fehler auftritt. Nach dem ersten Fehler muss das System einen akustischen und optischen Alarm auslösen und als TN- oder TT-System arbeiten.

Die Leitungsimpedanz und Schleifenimpedanz kann einfach an jedem Ende des Netzes gemessen werden:

- Leitungsimpedanz in einem IT System:
 - ZLine = ZLine Leiter + ZTransformator + ZNeutral Leiter + ZLokaler Neutralleiter

• Schleifenimpedanz in einem IT System:

Z_{Loop} = OGEÖFFNETE SCHLEIFE (Ergebnisse liegen im oberen Bereich, meist über 35 kOhm)

Alle Phasenleiter sind mit Sicherungen geschützt. IMDs und RCMs werden häufig in einem IT-System installiert, um Isolationsfehler zu erkennen und einen Alarm auszulösen, bevor die Stromversorgung unterbrochen werden muss. RCDs sind nur teilweise verwendbar.

IT-Systeme werden normalerweise installiert in:

- medizinischen Räumen und Krankenhäusern.
- Notbeleuchtungsanlagen in Gemeinschaftseinrichtungen.

U ISO RLOW RCD LOOP LINE EARTH OTHER

- Einsatzfahrzeuge (Feuerwehrfahrzeuge, Rettungsfahrzeuge, ...), bei denen der Schutzleiter mit dem Fahrgestell des Fahrzeugs verbunden ist.
- Schiffe.
- Computer Stromversorgungssysteme.
- Chemische Industrie.
- Bergbauindustrie.
- Explosive Atmosphären, Chemische Industrie³.

Der Hauptvorteil ist, dass im Falle des ersten Fehlers (zwischen Phase und Erde) das System immer noch sicher arbeitet.

1.4 Gewährleistung der Sicherheit

1.4.1 Leitungsimpedanz

Das Ergebnis der Leitungsimpedanz zwischen einem Leiter und dem Neutralleiter kann zeigen, ob die eingebauten Leiter die hohen Leistungslasten verkraften. Die Überprüfung der installierten Überstromschalter ist durch Vergleich der Kennlinien mit dem berechneten Kurzschlussstrom möglich

Nach dem Drücken der START-Taste lädt das Gerät die Anlage zwischen den L, N oder L x, Ly Anschlüssen auf (siehe Abbildung 1-6) und misst die aufgeladenen (Abbildung 1-6: Schaltposition 1) und die entladenen (Abbildung 1-6: Schaltposition 2) Spannungen. Das Ergebnis wird durch die folgende Formel (vereinfachte Form) erhalten.

Abbildung 1-6: Leitungsimpedanzmessung (Z_{LN}) - Standardmethode

³ Siehe Metrel-Handbuch Leitfaden für Messungen an IT-Energieanlagen für weitere Informationen.

1.4.2 Fehlerschleifenimpedanz

Die Fehlerschleifenimpedanz sollte niedrig genug sein, damit der potentielle Fehlerstrom das installierte Schutzgerät innerhalb eines vorgeschriebenen Zeitintervalls im Falle einer fehlerhaften Last unterbrechen kann.

Nach dem Drücken der START-Taste lädt das Gerät die Anlage zwischen den L, N oder L x, Ly Anschlüssen auf (siehe Abbildung 1-7) und misst die aufgeladenen (Abbildung 1-7: Schaltposition 1) und die entladenen (Abbildung 1-7: Schaltposition 2) Spannungen. Das Ergebnis wird durch die folgende Formel (vereinfachte Form) erhalten.

 $R_{LOOP} = R_{L-PE} = \frac{U_{Unloaded} - U_{Loaded}}{U_{Loaded} / R_{Load}}$

Wenn Phasenverzögerungen gemessen ist, kann die Schleifenimpedanz Z_{L-PE} wie folgt berechnet werden:

 $Z_{L-PE} = R_{L-PE} + j\omega L_{L-PE}$

$$Z_{L-PE} = \frac{U_{Unloaded} - U_{Loaded}}{U_{Loaded} / R_{Load}} = \frac{\Delta U}{I_{test}}$$

mit:

 ΔU – Gemessener Spannungsabfall

Itest – Prüfstrom

Abbildung 1-7: Schleifenimpedanzmessung - Standardmethode

Einige Beispiele für Auswertung des Ergebnisses der Schleifenimpedanz:

 Wenn alle Sicherungen im Sicherungskasten B10 sind, sollten die Ergebnisse der Schleifenimpedanz in allen Stromkreisen den Wert von 4,4 Ω nicht überschreiten.

U ISO RLOW RCD LOOP LINE EARTH OTHER

- Wenn alle Sicherungen im Sicherungskasten C10 sind, sollten die Ergebnisse der Schleifenimpedanz in allen Stromkreisen den Wert von 2,2
 Ω nicht überschreiten.
- Wenn die integrierten Sicherungen gemischt sind einige der Sicherungen sind gG16, einige von sind B20, B16 und C10, dann sollten die Ergebnisse der Schleifenimpedanz auf allen Schaltungen den Wert der kritischsten nicht überschreiten, in unserem Fall sind das 2,0 Ω.

Wenn kein RCD vorhanden ist, sind die Grenzwerte des Erdungswiderstands dieselben wie für die Schleifenimpedanz - gültig für die TN und TT Installationen. Falls das Ergebnis der Schleifenimpedanz höher ist als der Grenzwert, werden die nächsten möglichen Lösungen empfohlen:

- Aufspüren möglicher schlechter Kontakte in der geprüften Steckdose.
- Aufspüren möglicher schlechter Kontakte an den Leitungen L und PE vom Sicherungskasten zur Steckdose.
- Wechsel der eingebauten Sicherung mit dem niedrigeren Nennstrom.
- Änderung des Querschnitts der eingebauten Leitungen.

1.4.3 Vergleichsleitung und Fehlerschleifenimpedanzen

Die Auswertung der Ergebnisse der Leitungs- und Schleifenimpedanz und deren Vergleich ist sehr wichtig, um die Art der Fehlersuche zu bewerten:

- Leitungs- und Schleifenimpedanz gleich sind (Z_{LOOP} = Z_{LINE}). Wenn beide Impedanzen:
 - Über dem maximal erlaubten Grenzwert sind, gibt es möglicherweise schlechte Kontakte in der Leitung (L).
 - Wenn keine schlechten Kontakte vorhanden sind, ist das Kabel vom Sicherungskasten zum getesteten Punkt zu lang oder sein Querschnitt ist zu niedrig. Es wird empfohlen, das Kabel mit einem höheren Querschnitt der Kabel zu ersetzen.
 - Wenn es nicht notwendig ist, die Leistung mit dem Nennstrom der eingebauten Sicherung zu verwenden, kann die Sicherung durch eine mit niedrigeren Nennstrom ersetzt werden, und das Kabel kann gleich bleiben.
 - Innerhalb der zulässigen Grenzen und alle Steckdosen erreichen sich die gleichen Ergebnisse, können wir daraus schließen, dass das TN-Erdungssystem getestet ist.
- Die Schleifenimpedanz ist viel höher als die Leitungsimpedanz (ZLOOP >> ZLINE):
 - Wenn diese Impedanzen an allen gemessenen Steckdosen vorhanden sind, können wir zu dem Schluss kommen, dass das TT-Erdungssystem getestet ist.
 - Wenn kein TT-Erdungssystem vorhanden ist, liegt ein Fehler am PE-Leiter vor.
- Die Schleifenimpedanz ist viel niedriger als die Leitungsimpedanz (Z_{LOOP} >> Z_{LINE}):
 - Liegt ein Fehler am Neutralleiter vor.

U ISO RLOW RCD LOOP LINE EARTH OTHER

Die maximal zulässigen der Leitungs- und Fehlerschleifenimpedanzen zur Sicherstellung der Auslösefähigkeit der eingebauten Sicherungen vom Typ B, C oder gL-gG in der Installation mit der Netznennspannung $U_{L-N} = 230$ V sind in der folgenden Tabelle aufgeführt.

Nennstrom der	Typ der Typ der		Art der			
Überstromschutzeinr	automatischen		automatis	automatischen		ng gG
ichtung (A).	Sicherung	Sicherung B		gС		
	la=5 [.] In	Zs (Ω)	la=5 [.] ln	Zs (Ω)	la (A)	Zs (Ω)
	(A)	0, 23	(A)	0, 23		0,45
2	10	22	20	11	16	13,7
4	20	11	40	5,5	32	6,8
6	30	7,3	60	3,65	47	4,6
10	50	4,4	100	2,2	82	2,6
16	80	2,8	160	1,4	110	2,0
20	100	2,2	200	1,1	147	1,4

Tabelle 1-1: Maximal zulässigen Fehlerschleifenimpedanzen bei den verwendeten Schmelzsicherungen Typ B, C und gG⁴

Die Auslösezeiten hängen von den Eigenschaften einer eingebauten Sicherung oder des Fehlerstromschutzschalters ab.

Schaltungstyp	Auslösezeit
Explosionsgeschü	100 ms
tzt	
3-phasig	200 ms
1-phasig	400 ms
Feste Verbindung	5 s

Tabelle 1-2: Auslösezeiten der Sicherungen

Wenn eine Installation mit einem RCD geschützt ist werden, damit der RCD während des Tests nicht ausgelöst, spezielle Messtechniken verwendet.

1.4.4 RCD

Die Installation von RCDs ist:

- Obligatorisch in TT Systemen.
- Optional in TN Systemen, obwohl europäische Länder in der Regel RDCs auch auf solchen Systemen heute installieren.
- Optional in IT Systemen in jeder Schaltung als zusätzlicher Schutz für den Fall, dass ein zweiter Fehler auftritt, nachdem der erste bereits vorhanden ist.

⁴ Für weitere Parameter/Grenzwerte siehe das Metrel Handbuch **Leitfaden zum Prüfen und Überprüfen von Niederspannungsanlagen** für weitere Parameter / Grenzwerte.

1.4.4.1 RCD Prüfung der Auslösezeit

Mit der Prüfung der Auslösezeit wird der korrekte Betrieb des RCD verifiziert. Voraussetzungen:

- Erfolgreiches Auslösen des RCD.
- Die Auslösezeit tan bei Ian liegt innerhalb der vordefinierten Grenzwerte.

Auslösezeiten werden bei 0,5 $I_{\Delta N}$, 1 $I_{\Delta N}$, 2 $I_{\Delta N}$ und 5 $I_{\Delta N}$ gemessen.

Damit die Auslöseprüfung bestanden werden kann, muss der RCD gemäß den definierten Grenzwerten in Tabelle 1-3 auslösen.

RCD Typ	RCD Prüfstrom						
	$1/_2 \times I_{\Delta N}$	$I_{\Delta N}$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$			
Allgemein (nicht verzögert)	Kein Auslösen	t _∆ < 300 ms	t _∆ < 150 ms	t _∆ < 40 ms			
Selektiv	Kein	130 ms < t∆ < 500	60 ms < t_{Δ} < 200	50 ms < t_{Δ} < 150			
(zeitverzögert)	Auslösen	ms	ms	ms			

Tabelle 1-3: Auslösezeiten gemäß IEC 60364-4-41

1.4.4.2 RCD Prüfung des Auslösestroms

Mit der Prüfung des Auslösestroms wird der korrekte Betrieb des RCD verifiziert. Voraussetzungen:

- Erfolgreiches Auslösen,
- Strom I_{Δ} und Auslösezeit t $_{\Delta}$ bei I_{Δ} (Strom, bei dem RCD ausgelöst wird) liegen innerhalb vordefinierter Grenzen.

Ein kontinuierlich ansteigender Fehlerstrom \underline{I}_{Δ} ist zum Prüfen der Schwellenempfindlichkeit für das Auslösen des RCDs erforderlich. Die Prüfung ist bestanden, wenn der RCD bei Strömen gemäß 2.4 auslöst.

	Anstiegsb	ereich	Wellenform	
кортур	Startwert	Endwert		
\sim AC	0,5×I∆N	1,0×I∆N	Sinus	
	0,35×I∆N	1,4×I∆N	Copulat	
₽	0,5×I∆N	2,0×I∆N	Gepuist	

Tabelle 1.-4: Auslösezeiten gemäß IEC/TR 60755

1.4.4.3 RCD Prüfung der Auslöse-Berührungsspannung

Mit der Prüfung der Auslöse-Berührungsspannung wird der korrekte Betrieb des RCD verifiziert. Voraussetzungen:

- Erfolgreiches Auslösen,
- Der gemessene Erdwiderstand des Objekts muss niedriger sein als in 1.4.5 Erdungswiderstand und Berührungsspannung beschrieben.

U ISO RLOW RCD LOOP LINE EARTH OTHER

1.4.5 Erdungswiderstand und Berührungsspannung

Die tatsächliche Berührungsspannung wird aus dem gemessenen Erdwiderstand und Auslösestrom berechnet. Um gültige Messwerte zu erhalten, müssen die korrekten RCD-Einstellungen ausgewählt werden.

Zusätzlicher Schutz gegen zu hohe Berührungsspannung (U_{CL} - Grenzwert der Berührungsspannung) ist gewährleistet, jedoch nur für den Fall, dass der Erdungswiderstand des Objekts niedrig genug ist.

Nenndifferenzstro	10	30	100	300	500	1000	
Maximal	zulässiger	5000	1666	500	166	100	50
Erdungswiderstand							
$U_{CL} = 50 V (\Omega)$							
Maximal	zulässiger	2500	833	250	83	50	25
Erdungswiderstand							
U _{CL} = 25 V (Ω)							

Tabelle 15: Maximal zulässige Erdungswiderstandswerte (ZL-PE) für RCD
geschützte Installationen

Hinweis:

- In TT Installationssystemen stellt der Erdungswiderstand R_E den Hauptteil der Schleifenimpedanz dar. Daher ist der Schleifentest zur Messung des Erdungswiderstands von Objekten, Systemen usw. geeignet.
- Wenn der RCD nachgeschaltet installiert ist, sind die Installation und Teile der Verkabelung nicht geschützt. In diesem Fall muss der Grenzwert für den Überstromschutz berücksichtigt werden. Ein typisches Beispiel ist eine Steckdose mit integriertem RCD.
- Wenn kein RCD Gerät vorhanden ist, muss der gewählte Grenzwert entsprechend der verwendeten Sicherungskennlinie eingestellt werden.

Einige Beispiele für Bewertung des Erdungswiderstandswerts:

- Beträgt der RCD Differenznennstrom 500mA und max. zulässige Kontaktspannung ist 50 V, beträgt der maximal zulässige Erdungswiderstandswert 100 Ω.
- Beträgt der RCD Differenznennstrom 30mA und max. zulässige Kontaktspannung ist 25V, beträgt der maximal zulässige Erdungswiderstandswert 833 Ω.

Falls das Ergebnis des Erdungswiderstands höher ist als der Grenzwert, werden die nächsten möglichen Lösungen empfohlen:

- Aufspüren möglicher schlechter Kontakte in der geprüften Steckdose.
- Aufspüren möglicher schlechter Kontakte an der PE Leitung vom Sicherungskasten zur Netzsteckdose.
- Aufspüren einer möglichen schlechten Erdung des Objekts oder überhaupt keine Erdung.

Wenn der Erdungswiderstand des Objekts innerhalb der zulässigen Werte liegt, ist die zusätzliche Prüfung des RCD, um den Sicherheitsschutz zu gewährleisten, erforderlich:

- Die Auslösezeit des RCD, falls der Fehlerableitstrom der gleiche wie der Differenznennstrom des RCD ist, muss innerhalb von 300 ms liegen.
- Die Auslösezeit des RCD, falls der Fehlerableitstrom das 5-fache des Nenndifferenzstrom von 30mA des RCD ist, muss innerhalb von 40ms liegen.

1.4.6 Isolation

Um die vollständige Sicherheit der Installation zu gewährleisten, muss einer der wichtigsten Schutzmaßnahmen gegen gefährliche Spannungen geprüft werden. Die Sichtprüfung ist erforderlich und die Prüfung der isolierten Teile muss an jedem Stromkreis getrennt durchgeführt werden.

Für diese Art der Prüfung muss die Anlage so vorbereitet sein, dass **keine Spannung anliegt** und **keine Verbraucher angeschlossen** sind. Die Isolationsprüfung startet, nachdem der RCD aus diesem Grund ausgelöst hat.

Die Isolationsprüfung muss mit einer Spannung durchgeführt werden, die höher als die mögliche aktuelle Netzspannung ist, und die **Prüfspannung muss höher als 500 V** sein.

Der Wert des Isolationswiderstands muss größer als 1 MΩ sein.

1.4.7 Durchgang

Der grundsätzliche Schutz vor gefährlicher elektrischer Spannung wird durch Potentialausgleich und Erdung aller zugänglichen Metallteile der umliegenden Anlagen gewährleistet. Die Sichtprüfung ist notwendig und die Prüfung von R_{LOW} oder R_{PE} muss zwischen MPE-, fernen PE oder Referenz PE-Punkten zu PE Leitern, leitfähigen Teilen und dem Gehäuse von angeschlossenen Lasten gemessen werden. Der Prüfstrom muss mindestens 200 mA, AC oder DC betragen.

Die Ergebnisse sollten niemals höher als 2 Ω sein. Empfohlene Ergebnisse für spezielle Installationen sind 1 Ω oder niedriger.

Bei Installationen ohne RCD Schutz müssen die Ergebnisse niedrig genug sein, um die Auslösefähigkeit der Netzinstallation im Fehlerfall zu gewährleisten. Es müssen die gleichen Bedingungen erfüllt sein wie bei der Messung der Fehlerschleife - Referenzierung auf Tabelle 1-1 und Tabelle 1-2.

2 Messungen an elektrischen Anlagen in der Praxis

In diesem Kapitel werden die Grundlagen für die Messung von elektrischen Installationen in Gebäuden in TN-, TT- und IT-Erdungssystemen beschrieben. Obwohl die Reihenfolge der Messungen einer logischen Reihenfolge von Impedanz zu Erdungswiderstand folgt, ist die richtige Reihenfolge bei der Durchführung einer ersten Inspektion der Installationen (und empfohlene Reihenfolge bei periodischen Tests) wie folgt:

- 1. Durchgangsprüfung (RLOW)
- 2. Isolationswiderstand(RISO)
- 3. Leitungsimpedanz (ZLINE)
- 4. Fehlerschleifenimpedanz (Z_{LOOP})
- 5. RCD Prüfung
- 6. Prüfungen des Erdungswiderstands
- 7. IMD und ISFL Prüfung
- 8. Spannungsprüfung

2.1 Allgemeine Einstellungen des Instruments

Abhängig vom zu prüfenden Erdungssystem muss auch das entsprechende System am Gerät eingestellt werden. Um dies zu tun:

2. Wenn das verwendete Erdungssystem TN oder TT ist, wählen Sie die Option **TN/TT**. Wenn das verwendete Erdungssystem IT ist, wählen Sie die Option **IT**.

🛨 Earthin	ıg system		¢⊊ 13:42	Earth	ing system		۶ ζ	13:42
		TN/TT				TN/TT		
		ІТ				ιт		
Earthing sys	tem			Earthing sy	/stem			
					E			

3. Verlassen Sie das Menü Einstellungen.

2.2 Messung des Leitungsimpedanz

Die Leitungsimpedanz wird in einer Schleife gemessen, die aus einer Netzspannungsquelle und einer Leitungsverdrahtung (zwischen den Leitern und Neutralleitern oder zwischen den Leitern eines 3-Phasensystems) besteht. Der Umfang der Leitungsimpedanz Prüfung ist:

- Überprüfung der Wirksamkeit von installierten Überstrom-Trennvorrichtungen.
- Zur Überprüfung der internen Impedanz für die Einspeisung.
- Zur Überprüfung einer zu hohen (übermäßigen) internen Leitungsimpedanz für die Einspeisung. Dies verursacht einen zu hohen Spannungsabfall zwischen dem Leistungstransformator und einer Last.

 Fuse: Z loop L-PE / Z line L-L, L-N IEC 60364-6 61.3.6.3., 61.3.11., equipment: IEC 61557-3 Parameters / Limits are characteristics of particular built-in Fuse, designed for trip-out time of: 0.1s (Explosive), 0.2s (3Phase Circuits), 0.4s (1Phase systems) or 5s (fixed connections). Measured values of Impedances from the end of the circuit must be lower than Zs from the table. 								
distant and the second s	L.	Tip	bВ	Tip	C	Tip	G	
	IN (A)	la=5x	Zs=(Ω)	la=10x	Zs=(Ω)	In	Zs=(Ω)	
	(A)	In (A)	(0,2 s)	In (A)	(0,2 s)	(A)	(0,4 s)	
	2	10	22	20	11	16	13,7	
AN EL CALL	4	20	11	40	5,5	32	6,8	
	6	30	7,3	60	3,65	47	4,6	
	10	50	4,4	100	2,2	82	2,6	
	16	80	2,8	160	1,4	110	2,0	
	20	100	2,2	200	1,1	147	1,4	
More Parameters/Limits could be found in Metrel Handbooks and inside Eurotest/Smartec testers.								

Abbildung 2-1: Schaubild für Messungen der Leitungsimpedanz

Abbildung 2-2: Messen von Z_{Line} im Application Trainer mit dem Schuko Commander

Abbildung 2-3: Messen von Z_{Line} im Verteiler des Application Trainers mit Kabeln

Abbildung 2-4: Messen von Z_{Line} im Application Trainer mit dem Schuko Commander an einem IT System

2.2.1 Hintergrund der Messungen

Leitungsimpedanz umfasst den ohmschen und induktiven Teil in der Kurzschlussschleife. Der Hauptanteil der Induktivität kommt von den Induktivitäten der Leistungstransformatoren.

Der Widerstandsteil kommt hauptsächlich von der Kupferverdrahtung in der Schleife (Transformator, Phasen- und Neutralleiter).

Im Allgemeinen kann der induktive Teil vernachlässigt werden, wenn die Schleifenimpedanz > 0,4 Ω ist.

Bei Anwendungen, bei denen die Messung in der Nähe des Leistungstransformators (< 50 m) durchgeführt wird, kann die Induktivität einen ähnlichen Wert haben wie der Widerstandsanteil. In diesem Fall ist es sehr wichtig, das Ergebnis der Impedanz zu berücksichtigen, da das Ergebnis des Leitungswiderstands niedriger ist und zu falschen Beurteilungen führen kann.

2.2.2 Leitungsimpedanz

Fehler (schlechte Kontakte, Korrosion) oder unsachgemäßer Aufbau sind häufig der Grund für zu hohe Leitungsimpedanzen und falsch eingebaute Sicherungen.

Die Sicherheitsbedingungen werden durch Messen der Leitungsimpedanz (Z_{LINE} oder R_{LINE}) geprüft, z.B. Kurzschlussstrom I_k. Die Grenzströme und die Impedanz hängen normalerweise vom Sicherungstyp, der Größe und der erforderlichen Auslösezeit ab. Leitungswiderstand oder Leitungsimpedanz können gemessen werden. Die Widerstandsmessung gibt nur den ohmschen Anteil der Schleife zurück. Die Impedanzmessung berücksichtigt auch den induktiven Teil. Im Allgemeinen wird eine Impedanzmessung bevorzugt, wenn die Messung in der Nähe des Transformators oder der Installation mit hohen Nennströmen durchgeführt wird. In diesem Fall ist der Anteil des induktiven Teils relativ hoch.

2.2.2.1 Kurzschlussleitung - Neutralleiter Impedanz und unbeeinflusster Kurzschlussstrom

Die Kurzschlussschleife Leiter - Neutralleiter besteht aus:

- ZT sekundäre Impedanz des Leistungstransformators,
- Z_L Verdrahtung der Phase von der Quelle zum Fehler und
- Z_N Verdrahtung des Neutralleiters von der Quelle zum Fehler und

Die Impedanz von Leiter zu Neutralleiter ist die Summe der Impedanzen und Widerstände, die die Leiter zum Neutralleiter in der Schleife bilden.

 $Z_{\text{LINE}} = Z_{\text{L}} + Z_{\text{N}} + Z_{\text{T}}$

In einem 3-Phasen-System gibt es drei Leiter-Neutralleiter Impedanzen (Z_{L1-N}, Z_{L2-N} und Z_{L3-N}).

 $Z_{\text{LINE}} = \mathbf{Z}_{\text{LN}} = \mathbf{Z}_{\text{L}} + \mathbf{Z}_{\text{N}} + \mathbf{Z}_{\text{TLN}}$

Der Kurzschlussstrom Ik ist definiert als:

$$I_{PSC} = \frac{U_{LN}}{Z_{LN}} > I_a$$

mit

U_{LN} – Nennfehlerschleifenspannung oder Nennversorgungspannung.

 I_k muss höher als I_a (Strom für die Nennabschaltzeit) der Überstromtrennvorrichtung sein.

Die Leiter - Neutralleiter (oder Leiter - Leiter) Impedanz sollte niedrig genug sein, z.B. der unbeeinflusste Kurzschlussstrom ist hoch genug, dass die installierte Schutzvorrichtung die Kurzschlussschleife innerhalb des vorgeschriebenen Zeitintervalls trennt. Der Grenzstrom und die Impedanz hängen vom gewählten Sicherungstyp, der Größe und der erforderlichen Auslösezeit ab.

Abbildung 2-5: Kurzschlussstrom zwischen Leiter und Neutralleiter

2.2.2.2 Kurzschlussleitung - Leitungsimpedanz und Kurzschlussstrom

Die Kurzschlussschleife Leiter - Leiter besteht aus:

- Z_T sekundäre Impedanz des Leistungstransformators,
- Z_{Lx} Verdrahtung der ersten Phase von der Quelle zum Fehler und
- Z_{Ly} Verdrahtung der zweiten Phase von der Quelle zum Fehler und

Die Impedanz von Leiter - Leiter ist die Summe der Impedanzen und Widerstände, die die Leiter- Leiter in der Schleife bilden. In einem 3-Phasen-System gibt es drei Leiter - Leiter Impedanzen (ZL1-L2, ZL1-L3 und ZL2-L3).

$$Z_{\text{LINE}} = \mathbf{Z}_{\text{Lx-Ly}} = \mathbf{Z}_{\text{Lx}} + \mathbf{Z}_{\text{Ly}} + \mathbf{Z}_{\text{TLL}}$$

Der Kurzschlussstrom I_k ist definiert als:

$$I_{PSC} = \frac{U_{LxLy}}{Z_{LxLy}} = \frac{U_{LN} \cdot \sqrt{3}}{Z_{LxLy}} > I_a$$

 I_k muss höher als I_a (Strom für die Nennabschaltzeit) der Überstromtrennvorrichtung sein.

Die Leiter - Leiter Impedanz sollte niedrig genug sein, z.B. der unbeeinflusste Kurzschlussstrom ist hoch genug, dass die installierte Schutzvorrichtung die Kurzschlussschleife innerhalb des vorgeschriebenen Zeitintervalls trennt. Der Grenzstrom und die Impedanz hängen vom gewählten Sicherungstyp, der Größe und der erforderlichen Auslösezeit ab.

Abbildung 2-6: Kurzschlussstrom zwischen zwei Phasenleitern

2.2.2.3 Spannungsabfall

Während der Z_{LINE} Messung ist die Sicherung vor der gemessenen Schaltung diejenige, auf die Bezug genommen wird. Bei der Messung von Z_{LINE} am Versorgungsleiter wird die vom elektrischen Verteiler vorgeschriebene Sicherung berücksichtigt. Bei der Messung von Z_{LINE} am Stromkreis wird die vor diesem Stromkreis installierte Sicherung berücksichtigt. Der Unterschied zwischen beiden Messungen darf 3% nicht überschreiten.

Nachdem die Referenzimpedanz (Z_{REF}) bestimmt worden ist, kann der tatsächliche Spannungsabfalltest durchgeführt werden. Der Spannungsabfall wird folgendermaßen berechnet:

$$\Delta U[\%] = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100 < 3\%$$

Dabei sind:

ΔU – Spannungsabfall

- Z Leitungsimpedanz
- ZREF Referenz Leitungsimpedanz,
- I_N Nennstrom der gewählten Sicherung
- U_N Nennspannung (siehe Tabelle 2-1).

Un	Eingangsspannungsbereich oder L1-L2)	(L-N
110 V	93 V <= UL-N < 134 V	
230 V	185 V <= UL-N <= 266 V	
400 V	321 V <= UL-N <= 485 V	

Tabelle 2-1: Tabelle Nennspannungsbereich

2.2.3 Übungen

2.2.3.1 Übung Nr. 2.2-1: dU, $Z_{\text{L-N}}$ und I_k Messung auf der Versorgungsseite

Messen der Verbindungstopologie

Abbildung 2-7: Topologie in einem 1-phasigen TN System auf der Versorgungsseite

Messverfahren

1 Um die Leitungsimpedanz zu messen, wählen Sie die Leitungsimpedanzmessung **Z**_{L-L, L-N}(**Z Line**), welche die Impedanz zwischen Phase und Neutralleiter misst.

Die an der Versorgungsseite gemessene Leitungsimpedanz ist tatsächlich die Referenzleitungsimpedanz (Z_{REF}).

Um den Spannungsabfall zu messen, wählen Sie die Spannungsabfallmessung **dU**.

Wenn der Spannungsabfall an diesem Prüfpunkt gemessen wird, sollte der Abfall tatsächlich 0,0% betragen, da die gemessenen und die Bezugsimpedanzen gleich sein sollten.

2 Um korrekte Messwerte während der Messung zu erhalten, wählen Sie die entsprechenden Sicherungseinstellungen (Sicherungstyp, Größe und Auslösezeit), indem Sie in die untere linke dunkelgraue Ecke klicken.

U	ISO	RLOW	RCD	LOOP	LINE	EARTH OT	HER
➡ Z line			¢ 111 02:38	🕒 Volta	ge Drop	۶¢	14:08
z _	Ω					,	
lpsc _	A			dU _	[%]	δ Zref 7.33 Ω	
Un V	<u>RΩ</u>	XL	_Ω ?	lpsc	_A Un	ν zΩ	$\langle \mathbf{O} \rangle$
Fuse Type Fuse I	gG 6 A			Fuse Type Fuse I	6	B	?
Fuse t la(lpsc)	0.4 s 46.4 A	• 2370 • 2370 • 237	··· •	Fuse t Limit(dU)	0.4 3.5		444

Typischerweise wird in einem TN oder TT System in einem Wohngebäude mit einem 1-Phasensystem eine 6A gG-Sicherung verwendet. Die Einstellungen für jedes System werden unten angezeigt.

Parameters & Limits					
Fuse Type		gG	>		
Fuse I	<	G A	>		
Fuse t	<	0.4 s	>		
la(lpsc)		46.4 A			

Sobald eine Einstellung der Sicherungsparameter geändert wird, wird automatisch der Grenzwert für den Kurzschlussstrom (Ik) festgelegt.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den N-Leiter und das Phasenkabel an einen Phasenleiter (L1, L2 oder L3).

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Der Kurzschlussstrom Ik wird berechnet als:

$$I_{PSC} = \frac{U_N}{Z_{MEASURED}}$$

mit:

 U_N - Nennwert, bestimmt anhand der gemessenen Spannung (U_{L-N}).

In einem 1-phasigen TN/TT System beträgt das maximal zulässige Impedanz Ergebnis für eine 6A gG Sicherung mit 400 ms Auslösezeit **4,6** Ω^5 . Wenn ein 3-phasiges TN/TT System verwendet wird, wird eine 6A B-Sicherung mit einer Auslösezeit von 200 ms verwendet. In diesem Fall beträgt die zulässige Impedanz **7,3** Ω .

Wie in den obigen Abbildungen zu sehen ist, liegen Impedanz, Spannungsabfall und I_k innerhalb der Grenzwerte und die Prüfung ist als bestanden markiert.

Erwartete Ergebnisse mit einem simulierten Fehler

Es ist nicht möglich, einen Fehler im Application Trainer auf der Versorgungsseite zu simulieren.

⁵ Weitere Einzelheiten zu Auslösezeiten und Impedanzen der Sicherungen finden Sie im Kapitel 1.4 Gewährleistung der Sicherheit.

2.2.3.2 Übung Nr. 2.2-2: dU, Z_{L-N} und I_k Messung auf der Steckdosenseite

Messen der Verbindungstopologie

Abbildung 2-8: Topologie in einem 3-phasigen TN-System auf der Ausgangsseite

Messverfahren

1 Um die Leitungsimpedanz zu messen, wählen Sie die Leitungsimpedanzmessung Z_{L-L, L-N}(Z Line), welche die Impedanz zwischen Phase und Neutralleiter misst.

Die an der Versorgungsseite gemessene Leitungsimpedanz ist tatsächlich die Referenzleitungsimpedanz (Z_{REF}).

Um den Spannungsabfall zu messen, wählen Sie die Spannungsabfallmessung **dU**.

Wenn der Spannungsabfall an diesem Prüfpunkt gemessen wird, sollte der Abfall tatsächlich 0,0% betragen, da die gemessenen und die Bezugsimpedanzen gleich sein sollten.

2 Um korrekte Messwerte während der Messung zu erhalten, wählen Sie die entsprechenden Sicherungseinstellungen (Sicherungstyp, Größe und Auslösezeit), indem Sie in die untere linke dunkelgraue Ecke klicken.

Wenn wir zum Beispiel eine B6 Sicherung in einem Wohngebäude mit einem 3-Phasen System verwenden, sollten die folgenden Sicherungseinstellungen festgelegt werden:

🗅 Parameters & Limits 🛛 🖾					
Fuse Type	<	В	>		
Fuse I		6 A	>		
Fuse t	<	0.2 s	>		
la(lpsc)		30 A			

3 Sobald eine Einstellung der Sicherungsparameter geändert wird, wird automatisch der Grenzwert für den unbeeinflussten Kurzschlussstrom (Ik) festgelegt.

- 4 Wenn der Commander verwendet werden soll, schließen Sie den Commander an einer entsprechenden Schuko-Steckdose an. Wenn der Commander nicht verwendet wird, verbinden Sie die L_x und L_y Kabel mit den entsprechenden Leitern.
- 5 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Der Kurzschlussstrom Ik wird berechnet als:

$$I_{PSC} = \frac{U_N}{Z_{MEASURED}}$$

mit:

U_N - Nennwert, bestimmt anhand der gemessenen Spannung (U_{L-N}).

In einem 3-phasigen TN/TT System beträgt das maximal zulässige Impedanz Ergebnis für eine 6A B Sicherung mit 200 ms Auslösezeit **7,3** Ω^6 . Wenn ein 1-phasiges TN/TT System verwendet wird, wird eine 6A gG Sicherung mit einer

⁶ Weitere Einzelheiten zu Auslösezeiten und Impedanzen der Sicherungen finden Sie im Kapitel 1.4 Gewährleistung der Sicherheit.

Auslösezeit von 200 ms verwendet. In diesem Fall beträgt die zulässige Impedanz **4,6** Ω .

Wie in den obigen Abbildungen zu sehen ist, liegen Impedanz, Spannungsabfall und I_k innerhalb der Grenzwerte und die Prüfung ist als bestanden markiert.

Erwartete Ergebnisse mit einem simulierten Fehler

Während der Prüfung fügen wir einen Fehler in der Schaltung ein, die zusätzlichen 10Ω in die Verdrahtung einführt, simulieren einen Verdrahtungsfehler im TN/TT-Erdungssystem. Der Application Trainer unterstützt keine Fehlersimulation in einem IT Erdungssystem. Um einen Fehler an einem 3-phasigen TN/TT System (gemäß unserem Beispiel) zu simulieren, aktivieren Sie den Schalter **S14** im Application Trainer:

Exercises	Switch	Function	Site of error	ON	OFF
Line	S12	ZLINE	TN/TT F1/2 L3/N outlet (3-ph.)	> 10 Ω	<2Ω
Impedance	S13	ZLINE	TN/TT F2/2 L1/N outlet	> 10 Ω	<2Ω
	S14	ZLINE	TN/TT F1/3 L1/N outlet	> 10 Ω	<2Ω

Abbildung 2-9: Simulierter Fehler bei einem 3-phasigen TN oder TT System

Der Test fehlschlägt, da die gemessene Impedanz höher als das maximal zulässige $(7,3 \Omega)$ für diese Art von Sicherung ist.

2.2.3.3 Übung Nr. 2.2-3: dU, Z_{L-N} und I_k Messung auf der Steckdosenseite in einem IT Erdungssystem

Beim IT-Netz ist der Versorgungsteil der Energiequelle von der Erde getrennt oder über

eine ausreichend hohe Impedanz an der Quelle geerdet. Die Leitungsimpedanz hängt von der Größe des Systems und der Größe des verwendeten Transformators ab:

- Ein kleines System benötigt einen kleineren Transformator, was zu einer höheren Impedanz der Referenzleitung führt.
- Ein großes System benötigt einen größeren Transformator, was zu einer niedrigeren Impedanz der Referenzleitung führt.

Diese Übung wird am Application Trainer durchgeführt, dessen Impedanz der Referenzleitung beträgt ungefähr 7 Ω .

Messverfahren

1 Zuerst muss die Impedanz der Referenzleitung gemessen werden. Dies geschieht mit der Messfunktion Spannungsabfall **dU**.

Um die Impedanz der Referenzleitung in einem IT-System zu messen, klicken Sie zunächst auf die Schaltfläche Referenz Impedanzmessung. Drücken Sie dann die START Taste für die Messung um den tatsächlichen Spannungsabfall zu messen.

Die Referenzleitungsimpedanz sollte nur an der einen Steckdose vorgenommen werden, die als Referenz ausgewählt ist. Alle nachfolgenden Spannungsabfallmessungen basieren dann auf dieser Referenzleitungsimpedanz.

2 Um die Leitungsimpedanz zu messen, wählen Sie die Leitungsimpedanzmessung Z_{L-L, L-N} (Z Line), welche die Impedanz zwischen Phase und Neutralleiter misst.

Die an der Versorgungsseite gemessene Leitungsimpedanz ist die tatsächlich Referenzleitungsimpedanz (Z_{ref}).

3 Um korrekte Messwerte während der Messung zu erhalten, wählen Sie die entsprechenden Sicherungseinstellungen (Sicherungstyp, Größe und Auslösezeit), indem Sie in die untere linke dunkelgraue Ecke klicken.

Wenn wir zum Beispiel eine B6 Sicherung in einem Wohngebäude mit einem 1-Phasen IT System verwenden, sollten die folgenden Sicherungseinstellungen festgelegt werden:

Parameters & Limits 10:						
Fuse Type	<	В	>			
Fuse I		6 A	>			
Fuse t	<	0.2 s	>			
la(lpsc)		30 A				

4 Sobald eine Einstellung der Sicherungsparameter geändert wird, wird automatisch der Grenzwert für den unbeeinflussten Kurzschlussstrom (Ik) festgelegt.

🛨 Z line	۲	10:34	
z	Ω		
			≣
UnV	<u>RΩ</u>	×LΩ	?
Fuse Type Fuse I	B Ga		
Fuse t la(lpsc)	0.2 s 30 A		444

- 5 Wenn der Commander verwendet werden soll, schließen Sie den Commander an einer entsprechenden Schuko-Steckdose an. Wenn der Commander nicht verwendet wird, verbinden Sie die L_x und L_y Kabel mit den entsprechenden Leitern.
- 6 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Da keine Fehler im IT System vorhanden waren, sind alle Tests bestanden.

Erwartete Ergebnisse mit einem simulierten Fehler

Es ist nicht möglich, Fehler in einem IT-System im Application Trainer zu simulieren.

2.3 Messung Fehlerschleifenimpedanz

Eine Fehlerschleife ist eine Schleife, welche die Netzquelle, die Leitungsverdrahtung und den Schutzerde-Rückpfad zur Netzquelle umfasst. Der Umfang der Schleifenimpedanz Prüfung ist:

- Überprüfung der Wirksamkeit von installierten Überstrom-Trennvorrichtungen.
- Überprüfung der Fehlerschleifenimpedanzen, der unbeeinflussten Fehlerströme und der Fehlerspannungswerte.

 Fuse: Z loop L-PE / Z line L-L, L-N IEC 60364-6 61.3.6.3., 61.3.11., equipment: IEC 61557-3 Parameters / Limits are characteristics of particular built-in Fuse, designed for trip-out time of: 0.1s (Explosive), 0.2s (3Phase Circuits), 0.4s (1Phase systems) or 5s (fixed connections). Measured values of Impedances from the end of the circuit must be lower than Zs from the table. 								
	L.	Tip B		Tip C		Tip G		
	In (A)	la=5x	$Zs=(\Omega)$	la=10x	Zs=(Ω)	In	$Zs=(\Omega)$	
		In (A)	(0,2 s)	In (A)	(0,2 s)	(A)	(0,4 s)	
	2	10	22	20	11	16	13,7	
10 S	4	20	11	40	5,5	32	6,8	
	6	30	7,3	60	3,65	47	4,6	
	10	50	4,4	100	2,2	82	2,6	
	16	80	2,8	160	1,4	110	2,0	
	20	100	2,2	200	1,1	147	1,4	
	More Paramete	ers/Limits cou	ld be found in	Metrel Handb	ooks and insid	de Eurotest/S	Smartec testers.	

Abbildung 2-10: Schaubild für die Messung der Fehlerschleifenimpedanz - TN-System

Limits: Where no RCD, select limit fro	m the FU	SE chara	cteristics,	test by Z	Z loop. Wh	ere RCD:
Nominal Differntial current IAN (mA)	10	30	100	300	500	1000
R earth (Ω) max. (Uc<25 V)	2500	833	250	833	50	25

Abbildung 2-11: Schaubild für die Messung der Fehlerschleifenimpedanz - TT-System

Abbildung 2-12: Messung von Z_{Loop} im Verteiler von Application Trainer mit Kabeln auf der Versorgungsseite (vor dem RCD)

Abbildung 2-13: Messung Z_{Loop} im Application Trainer mit dem Schuko Commander

2.3.1 Hintergrund der Messungen

Die Fehlerschleifenimpedanz umfasst den ohmschen und den induktiven Teil der Fehlerschleife. Der Hauptanteil der Induktivität kommt von den Induktivitäten der Leistungstransformatoren.

Der Hauptanteil des Widerstands besteht aus Kupferverdrahtung in der Schleife (Leiter, Transformatorwicklung) und den Erdungswiderständen (in TT Systemen).

Im Allgemeinen kann der induktive Teil vernachlässigt werden, wenn die Schleifenimpedanz > 0,4 Ω ist.

Bei Anwendungen, bei denen die Messung in der Nähe des Leistungstransformators (< 50 m) durchgeführt wird, kann die Induktivität einen ähnlichen Wert haben wie der Widerstandsanteil. In diesem Fall ist es sehr wichtig, das Ergebnis der Impedanz zu berücksichtigen, da das Ergebnis des Leitungswiderstands niedriger ist und zu falschen Beurteilungen führen kann.

2.3.1.1 Fehlerschleife, Fehlerimpedanz und Kurzschlussstrom in TN Systemen

In TN Systemen besteht die Fehlerschleife Z_{L-PE} aus:

- Z_T sekundäre Impedanz des Leistungstransformators,
- ZL Phasenverdrahtung von der Quelle zum Fehler und
- R_{PE} PE / PEN Verdrahtung vom Fehler zum Quellenwiderstand.

U ISO RLOW RCD LOOP LINE EARTH OTHER

Die Fehlerschleifenimpedanz ist die Summe der Impedanzen und Widerstände, die die Fehlerschleife bilden.

$$Z_{\text{LOOP}} = \mathbf{Z}_{\text{L-PE}} = \mathbf{Z}_{\text{L}} + \mathbf{R}_{\text{PE}} + \mathbf{Z}_{\text{T}}$$

Der Kurzschlussstrom Ik ist definiert als:

$$I_{PFC} = \frac{U_{L-PE}}{Z_{L-PE}} > I_a$$

mit

UL-PE – Nennfehlerschleifenspannung oder Nennversorgungspannung.

Die Überstromtrennvorrichtung muss so ausgelegt sein, dass sie im Falle eines Erdschlusses, d. h. eines Kurzschlusses von Leiter zu Erde (PE), auslöst. Dies bedeutet, I_k muss höher als I_a (Strom für die Nennabschaltzeit) der Überstromtrennvorrichtung sein.

Die Fehlerschleifenimpedanz sollte niedrig genug sein, z.B. der unbeeinflusste Fehlerstrom ist hoch genug, dass die installierte Schutzvorrichtung die Fehlerschleife innerhalb des vorgeschriebenen Zeitintervalls trennt. Die Grenzwerte für I_{PFC} und Z_{L-PE} hängen vom gewählten Sicherungstyp, der Größe und der erforderlichen Auslösezeit ab.

Abbildung 2-14: Fehlerschleife im 1-Phasen TN System

2.3.1.2 Fehlerschleife, Fehlerimpedanz und Kurzschlussstrom in TT Systemen

In TT Systemen besteht die Fehlerschleife aus:

- Z_{T} sekundäre Impedanz des Leistungstransformators,
- Z_L Phasenleiter von der Quelle zur Fehlerimpedanz,

REd

R_{Eh}+R_{Peh} –Erdungswiderstand der Anlage mit PE-Leiter vom Fehler zum Erdungspunkt,

– Erdungswiderstand der Quelle/Verteilungspunkt.

Die Fehlerschleifenimpedanz ist die Summe der Impedanzen und Widerstände, die die Fehlerschleife bilden.

 $Z_{\text{LOOP}} = \mathbf{Z}_{\text{L-PE}} = \mathbf{Z}_{\text{L}} + \mathbf{R}_{\text{Eh}} + \mathbf{R}_{\text{Ed}} + \mathbf{Z}_{\text{T}}$

Bei Kurzschluss oder hohem Ableitstrom zwischen Phase und Schutzleiter tritt an berührbaren Metallteilen eine gefährliche Berührungsspannung auf. Die Spannung muss unter 50 V bleiben (25 V für erschwerende Bedingungen), andernfalls muss der RCD auslösen:

$$Z_{L-PE} < \frac{U_C}{I_{AN}} = \frac{50 V}{I_{AN}}$$

mit

Uc – Berührungsspannung,

ZL-PE – Schleifenimpedanz,

 $I_{\Delta N}$ – Nennauslösestrom des RCD.

Abbildung 2-15: Fehlerschleife im TTSystem

2.3.1.3 Fehlerschleife, Fehlerimpedanz und Kurzschlussstrom in RCD geschützten TN und TT Systemen

In TT- und TN-Systemen, in denen RCD verwendet wird, wird eine andere Funktion zur Messung der Impedanz der Fehlerschleife verwendet – $Z_{S RCD}$.

Wenn die Installation mit Überstromgeräten geschützt ist, muss folgende Bedingung erfüllt sein:

$I_{PFC} > I_a$

mit:

- IPFC Tatsächlicher Kurzschlussstrom.
- Ia Strom für die Nennabschaltzeit des Überstromabschalters.

In diesem Fall sind die gemessenen Impedanzen niedrig (typischerweise <1,5Ω). Der Prüfstrom muss klein sein, um ein Auslösen des RCD zu vermeiden. Die Funktion führt einen niedrigen Prüfstrom (<15 mA) für alle verfügbaren RCD-Typen (10 mA ... 1 A) ein. Auf diese Weise stellen wir sicher, dass während der Messung kein RCD Typ ausgelöst wird.

Der durch den kleinen Prüfstrom verursachte Spannungsabfall ist sehr klein - so können schon geringe Spannungsschwankungen die Ergebnisse stark beeinflussen. Spannungsschwankungen werden hauptsächlich durch Lastschwankungen und Ein-/ Ausschaltungsereignisse im Netz verursacht.

Um dieses Problem zu lösen, müssen fortschrittliche Messtechniken verwendet werden, die über die Möglichkeiten dieses Tests hinaus gehen.

Abbildung 2-16: Schleifenimpedanzmessung in einem RCD-geschützten System

		LOOP	LINE	

2.3.2 Übungen

2.3.2.1 Übung Nr. 2.3-1: Z_{L-PE} und I_k Messung auf der Versorgungsseite

Messen der Verbindungstopologie

Abbildung 2-17: Topologie in einem 1-phasigen TN-System auf der Versorgungsseite

Obwohl ein RCD installiert ist, kann die Z_{LOOP} Funktion verwendet werden, ohne dass zu befürchten ist, dass der RCD auslöst, da die Messung auf der Versorgungsseite (Abbildung 2-17) stattfindet, wo der Stromkreis noch nicht durch den RCD geschützt ist.

Messverfahren

1 Für die Messung der Impedanz zwischen Phase und Erde wählen Sie die Fehlerschleifenimpedanzmessung ZL-PE (Z loop), Bei der Auswahl dieser Messung muss sichergestellt sein, dass ein TN-System ohne RCD verwendet wird. Wenn ein RCD in einem TN-System verwendet wird, löst diese Messung den RCS aus. In diesem Fall sollte die Option Z_S (Z_{S RCD}) in Betracht gezogen werden. Es ist nur möglich, eine Z_{LOOP}-Messung in einem RCD-geschützten System durchzuführen, wenn der Test wie bei dieser Übung auf der Versorgungsseite durchgeführt wird.

2 Um korrekte Messwerte während der Messung zu erhalten, wählen Sie die entsprechenden Sicherungseinstellungen (Sicherungstyp, Größe und Auslösezeit), indem Sie in die untere linke dunkelgraue Ecke klicken.

Typischerweise wird in einem TN System in einem Wohngebäude mit einem 1-Phasensystem eine 6A gG-Sicherung verwendet.

ー Parameters & Limits CIII				
Fuse Type		gG	>	
Fuse I	<	6 A	>	
Fuse t	<	0.4 s	>	
la(lpsc)		46.4 A		

Sobald eine Einstellung der Sicherungsparameter geändert wird, wird automatisch der Grenzwert für den unbeeinflussten Kurzschlussstrom (Ik) festgelegt.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den N-Leiter und das Phasenkabel an einen Phasenleiter (L1, L2 oder L3).

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Dieser Test sollte nur in TN Systemen verwendet werden, in denen kein RCD installiert ist. Wenn ein RCD in einem TN System installiert ist, sollte die Funktion Z_S RCD verwendet werden, um den RCD nicht auszulösen.

Der Kurzschlussstrom (I_k) wird wie folgt berechnet:

$$I_{PFC} = \frac{U_N}{Z_{MEASURED}}$$

mit:

 U_N - Nennwert, bestimmt anhand der gemessenen Spannung (U_{L-PE}).

Der gemessene **Z**_{LOOP} Parameter ist die tatsächliche Referenzimpedanz (Z_{REF}), da alle Messungen auf der Versorgungsseite durchgeführt werden. In einem TN System sollten die Messwerte **Z**_{LOOP} und **Z**_{LINE} gleich sein (für weitere Details, siehe Kapitel 1.4.3). In einem TT-System repräsentiert die Differenz zwischen **Z**_{LOOP} und **Z**_{LINE} den Erdwiderstand (R_E), der ungefähr 3 Ω beträgt.

Erwartete Ergebnisse mit einem simulierten Fehler

Es ist nicht möglich, einen Fehler im Application Trainer auf der Versorgungsseite zu simulieren.

2.3.2.2 Übung Nr. 2.3-2: Z_{L-PE} und I_{PFC} Messung auf der Steckdosenseite – RCD geschützt

Messen der Verbindungstopologie

Abbildung 2-18: Topologie in einem 1-phasigen TN System auf der Schaltungsseite

Abbildung 2-19: Topologie in einem 3-phasigen TN System auf der Schaltungsseite

Da die Messung auf der Schaltungsseite (nach dem RCD) stattfindet, ist die korrekte Funktion zur Durchführung dieser Messung die Z_{S RCD} Funktion, die den RCD nicht auslöst.

Messverfahren

1 Wählen Sie die Fehlerschleifenimpedanzmessung **Z**s _{RCD} für ein RCD geschütztes System, das die Impedanz zwischen Phase und Erde misst. Auf diese Weise wird der RCD während der Fehlerschleifenimpedanzmessung nicht ausgelöst.

2 Um korrekte Messwerte während der Messung zu erhalten, wählen Sie die entsprechenden Sicherungseinstellungen (Sicherungstyp, Größe und Auslösezeit), indem Sie in die untere linke dunkelgraue Ecke klicken.

Typischerweise wird in einem TN System in einem Wohngebäude mit einem 1-Phasensystem eine 6A gG Sicherung verwendet, während in einem 3-Phasen-System eine B6-Sicherung verwendet wird. Die Einstellungen für jeden Sicherungstyp sind unten angeführt.

Parameters & Limits 10:32				▲ Parameters & Limits				
Fuse Type		gG	>	Fuse Type	<	В	>	
Fuse I	<	6 A	>	Fuse I		6 A	>	
Fuse t	<	0.4 s	>	Fuse t	<	0.2 s	>	
la(lpsc)		46.4 A		la(lpsc)		30 A		

Sobald eine Einstellung der Sicherungsparameter geändert wird, wird automatisch der Grenzwert für den unbeeinflussten Kurzschlussstrom (Ik) festgelegt.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den N-Leiter und das Phasenkabel an einen Phasenleiter (L1, L2 oder L3).

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Der Kurzschlussstrom (Ik) wird wie folgt berechnet:

$$I_{PFC} = \frac{U_N}{Z_{MEASURED}}$$

mit:

U_N - Nennwert, bestimmt anhand der gemessenen Spannung (U_{L-PE}).

In einem 1-phasigen TN System beträgt die maximal zulässige Impedanz für eine 6A gG-Sicherung mit 400 ms Auslösezeit **4,6** Ω , während in einem 3-phasigen TN System die maximal zulässige Impedanz für eine 6A B Sicherung mit 200 ms Auslösezeit **7,3** Ω ⁷beträgt.

Wie in beiden Bildschirmen zu sehen ist, sind beide, die Impedanz und I_k sowohl innerhalb der Grenzwerte und die Prüfungen sind als bestanden markiert.

Erwartete Ergebnisse mit einem simulierten Fehler

Während des Tests fügen wir einen Fehler am Schutzleiter hinzu, indem wir den Schalter **S20** im Application Trainer aktivieren. Durch Umschalten dieses Schalters wird ein zusätzlicher Widerstand am Schutzleiter eines 1-phasigen TN Erdungssystems eingefügt.

⁷ Weitere Informationen zu den Auslösezeiten und Impedanzen der Sicherungen und RCDs finden Sie im Kapitel 1.4 Gewährleistung der Sicherheit.

				RCD	LOOP	L				
	_									
	S15	R LOW / IMD		IT F3/2 PE outlet		> 20 Ω			<1Ω	
	S16	ISFL / IMD	1	IT F3/2 ISFL		approx. 6 mA (@ 230 V) approx. 3 mA (@ 115 V)		< 1.3 mA		
m	S17	R LOW		IT PE ref.		approx. 3.3 Ω			<1Ω	
Conn	S18	R LOW	-	TN/TT F1/4 PE light		> 20 Ω			<1Ω	
ectio	S19	R LOW / Z LOOP		TN/TT F1/2 PE outlet (3-ph.)		approx. 3.4 Ω			<1Ω	
ŋ	S20	R LOW / Z LOOP	-	TN/TT F2/2 PE outlet		> 2.3 Ω			< 2 Ω	
	S21	R LOW	1	MPE / PE Gas		approx.	2.2 Ω		<1Ω	
	S22	RIOW		MPF / PF Heat i	nst	approx	330		< 1 0	

Abbildung 2-20: Simulierter Fehler am Schutzleiter in einem 1-phasigen TN System

Das Ergebnis beider Tests wird als bestanden angezeigt. Das korrekte Ergebnis der Messung sollte fehlschlagen, da der Schutzleiter einen Fehler simuliert hat Da $Z_{S RCD}$ nicht die richtige Methode zum Messen der Fehlerschleife in einem RCD geschützten System ist, wird der wahre Fehler vom Gerät nicht erkannt und das Gerät gibt ein falsches positives Ergebnis aus. Eine bessere Funktion, um den Widerstand in diesem Fall zu messen, wäre die R_{PE} Funktion. Wenn eine Sicherung mit einem höheren zulässigen Strom verwendet werden würde, würde das Ergebnis in diesem Fall ebenfalls als nicht bestanden angezeigt werden.

Wenn wir einen Fehler im Leiter (L) anstelle des Schutzleiters simulieren, sollte der Test fehlschlagen, da wir zusätzliche 10 Ω in die Verdrahtung Leiters einführen. Dies geschieht durch Aktivierung der Schalter **S12** (3-phasig), **S13** (1-phasig) oder **S14** (1-phasig) im Application Trainer.

				LOOP	LINE		
--	--	--	--	------	------	--	--

Exercises	Switch	Function	Site of error	ON	OFF
Line	S12	ZLINE	TN/TT F1/2 L3/N outlet (3-ph.)	> 10 Ω	<2Ω
Impedance	S13	ZLINE	TN/TT F2/2 L1/N outlet	> 10 Ω	<2Ω
	S14	ZLINE	TN/TT F1/3 L1/N outlet	> 10 Ω	<2Ω

Abbildung 2-21: Simulierte Fehler auf dem Leiter

In einem 1-phasigen TN System beträgt die maximal zulässige Impedanz für eine 6A gG-Sicherung mit 400 ms Auslösezeit **4,6** Ω , während in einem 3-phasigen TN System die maximal zulässige Impedanz für eine 6A B Sicherung mit 200 ms Auslösezeit **7,3** Ω^8 beträgt.

Das Ergebnis ist, dass der Test fehlschlägt, da der gemessene Impedanz Wert für beide Arten von Sicherungen höher ist als der maximal zulässige Wert (**4,6** Ω und **7,3** Ω).

⁸ Weitere Informationen zu den Auslösezeiten und Impedanzen der Sicherungen und RCDs finden Sie im Kapitel 1.4 Gewährleistung der Sicherheit.

2.4 Messen der RCD Parameter

2.4.1 Hintergrund der Messung

RCD Schutzschalter werden verwendet, um Benutzer von elektrischen Geräten gegen Stromschläge durch Fehler und Leckströme in der Anlage zu schützen. Schon relativ kleine Ströme sind gefährlich, wenn der Erdwiderstand und der Potentialausgleich relativ hoch sind. Typische Fehlerursachen sind eine verschlechterte Isolierung, Schmutz, Feuchtigkeit, Filterkondensatoren usw.

\bigcirc	RCD: Trip	out time, T	rip out Curre	nt IEC 60364-	6 61.3.6.1., 61	.3.7., equ	ipment: IEC 61557- 6
	DOD	RCD t	rip out at diffe	t Id (ms)	RCD	Slope range (from-to)	
	RCD	1/2 x I∆N	1 x ΙΔΝ	2 x I∆N	5 x IΔN	\sim AC	0.5 ÷ 1.0 x I∆N
	General	No trip	t∆ < 300	t∆ < 150	t∆ < 40	\gtrsim A	0.35 ÷ 1.4 x I∆N
	Selective	No trip	130 x t∆ < 500	60 x t∆ < 200	50 x t∆ < 150	<u> </u>	0.5 ÷ 2.0 x I∆N

Abbildung 2-22: Schaubild für Leitungsimpedanzmessung

Limits: Where no RCD, select limit fro	m the FU	SE chara	cteristics,	test by Z	loop. Wh	ere RCD:
Nominal Differntial current IAN (mA)	10	30	100	300	500	1000
R earth (Ω) max. (Uc<25 V)	2500	833	250	833	50	25

Abbildung 2-23: Schaubild für die Messung der Fehlerschleifenimpedanz - TT-System

Abbildung 2-24: RCD Messung im Verteiler des Application Trainers mit Kabeln auf der Versorgungsseite

Abbildung 2-25: RCD Messung im Application Trainer mit dem Schuko Commander

Abbildung 2-26: RCD Messung in einem IT Erdungssystem

2.4.1.1 Funktion eines RCD

In TN-Systemen fließen Fehler- und Ableitströme von stromführenden Leitern zum Schutzleiter und dann durch den PEN-Leiter zum Neutralleiter des Leistungstransformators. Der RCD muss auslösen, wenn der Fehlerstrom seinen Nennstrom überschreitet:

IFAULT, LEAKAGE \leq Ian

U ISO RLOW RCD LOOP LINE EARTH OTHER

Es muss sichergestellt sein, dass die Fehler- und Ableitströme keine Berührungsspannungen verursachen, die höher sind als die herkömmliche Sicherheitsgrenze von 50 (25) V.

$Z_{LOOP} \cdot I_{\Delta N} \leq U_C$

Erlaubte Berührungsspannungen variieren in Abhängigkeit von dem Vorhandensein von Wasser in einem Raum/Gebäude. In der Regel sind 3 Berührungsspannungen zulässig:

- 12 V für Krankenhäuser, Saunen.
- 25 V für Räume, in denen Wasser vorhanden ist (z. B. Badezimmer).
- 50 V für Räume, in denen kein Wasser vorhanden ist.

Impedanzen in TN Systemen sind in der Regel viel niedriger als erlaubt (zum Beispiel: Impedanz der durch RCD-Schutzvorrichtung geschützten Fehlerschleife mit einem Nenndifferenzstrom von 30 mA könnte so hoch wie 1666 sein Ω , während die tatsächlichen Werte niedriger als 2 sind Ω).

In TT Systemen fließen die Fehlerströme, die von der Netzspannung erzeugt werden, fließen durch den Fehler zum Schutzleiter (PE) und dann über den Erdungswiderstand des Systems zur Erde. Der Strom wird zum Erdungssystem des Leistungstransformators und somit zum Neutralanschluss des Transformators geführt. Die Gesamtimpedanz der Fehlerschleife besteht aus mehreren seriellen Impedanzen, wobei der größte Teil den globalen Widerstand des Erdungssystems darstellt; andere Impedanzen sind im Vergleich zu diesem Widerstand vernachlässigbar. Die folgende Bedingung muss erfüllt sein:

$R_E \cdot I_{\Delta N} \leq U_C$

mit:

 R_E – globaler Erdungswiderstand in Ω

- $I_{\Delta N}$ Nennauslösestrom des RCD,
- Uc Grenzwert der Berührungsspannung (50 V oder 25 V).

Die RCD Prüfparameter (Form des Prüfstroms, Größe) müssen vor dem Test korrekt eingestellt werden. Die Abschaltzeit $t_{\Delta N}$ und die tatsächlichen Abschaltströme I_{Δ} werden gemessen. Eine vollständige Analyse des ordnungsgemäßen Betriebs des installierten RCD umfasst:

- Abschaltzeiten $t_{\Delta N}$ bei $\frac{1}{2}$, 1 und 5 $I_{\Delta N}$
- Berührungsspannungsprüfung

Grenzwerte sind in entsprechenden Normen definiert und üblicherweise in Messgeräten integriert.

2.4.2 Übungen

2.4.2.1 Übung Nr. 2.4-1: RCD Auslösezeit, Strom- und Berührungsspannungsmessung

Messen der Verbindungstopologie

Abbildung 2-27: RCD Messung in einem 1-phasigen TT System

Messverfahren

1 Um die Berührungsspannung **U**_c eines TT Systems zu messen, wählen Sie den **RCD U**_c Test.

2 Um die Auslösezeit $t_{\Delta N}$ eines TT Systems zu messen, wählen Sie den **RCD t** Test.

3 Um den Auslösestrom I_{Δ} eines TT Systems zu messen, wählen Sie den **RCD** I Test.

4 Um alle RCD-Messungen (U_c , $t_{\Delta N}$, I_{Δ}) in einem einfachen Schritt durchzuführen, wählen Sie den **RCD Auto** Test.

5 Stellen Sie die RCD-Testparameter (I_{dN}, Stromart, Selektivität und Grenzwert der Berührungsspannung) ein, indem Sie in die untere, dunkelgraue Ecke klicken und die entsprechenden RCD Einstellungen auswählen.

In diesem Fall verwenden wir einen 30mA RCD, so in einem 1-phasigen TT Erdungssystem, da kein Wasser in der Nähe ist. Aus diesem Grund kann der Grenzwert der Berührungsspannung auf 50 V eingestellt werden.

6 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den N-Leiter und das Phasenkabel an einen Phasenleiter (L1, L2 oder L3).

7 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Im Normalfall sollte die Berührungsspannung deutlich unter 1 V liegen (für weitere Informationen, siehe Kapitel RCD Prüfung der Auslöse-Berührungsspannung),

U ISO RLOW RCD LOOP LINE EARTH OTHER

während die Auslösezeit und der Auslösestrom innerhalb der in den Kapiteln RCD Prüfung der Auslösezeit und RCD Prüfung des Auslösestroms beschriebenen Grenzen liegen sollten.

In unserem Fall liegen die Ergebnisse für alle drei Tests innerhalb der erwarteten Grenzen.

Nach den Auslösezeit- und Auslösestromprüfungen wird der RCD ausgelöst, wie es für die beiden Prüfungen beabsichtigt ist. Stellen Sie sicher, dass der RCD vor jedem Test zurückgesetzt wird.

Stattdessen kann für alle drei Prüfungen ein vordefinierter RCD AUTO SEQUENCE[®] Test (**RCD Auto**) angewendet werden. Die Funktionalität besteht darin, dass alle drei Tests nacheinander ausgeführt werden. Der Tester muss den RCD nur jedes Mal zurücksetzen, wenn er ausgelöst wurde, um mit dem Test fortzufahren.

🛨 RCD A	uto		(10:34
t ΙΔΝ x1, (+)	11.6 ms	t ΙΔΝ x1, (·) 17.1 ms	
t IΔN x5, (+) t IΔN x0.5, (+	8.2 ms)>300 ms	t ΙΔΝ x5, (· t ΙΔΝ x0.5,) 14.1 ms (-)>300 ms	
ld (+) Uc	28.5 mA 0.2 V	ld (-)	33.0 mA	
Labi		20	\sim	?
Type Use		A fixed		444

Erwartete Ergebnisse mit einem simulierten Fehler

RCD Prüfungen mit simuliertem Fehler erzeugen nicht genug Berührungsspannung, um fehlerhafte Ergebnisse korrekt anzuzeigen. Aus diesem Grund ist kein Beispiel angegeben.

2.4.2.2 Übung Nr. 2.4-2: RCD Auslösezeit, Strom- und Berührungsspannungsmessung in einem IT Erdungssystem

Messverfahren

1 Um die Berührungsspannung **U**c eines IT Systems zu messen, wählen Sie den **RCD U**c Test.

2 Um die Auslösezeit $t_{\Delta N}$ eines IT Systems zu messen, wählen Sie den **RCD** t Test.

3 Um den Auslösestrom I_{Δ} eines IT Systems zu messen, wählen Sie den **RCD I** Test.

4 Um alle RCD-Messungen (**U**c, $t_{\Delta N}$, I_{Δ}) in einem einfachen Schritt durchzuführen, wählen Sie den **RCD Auto** Test.

5 Stellen Sie die RCD-Testparameter (I_{dN}, Stromart, Selektivität und Grenzwert der Berührungsspannung) ein, indem Sie in die untere, dunkelgraue Ecke klicken und die entsprechenden RCD Einstellungen auswählen.

In diesem Fall verwenden wir einen 30mA RCD so in einem IT-Erdungssystem als wenn Wasser in der Nähe wäre. Aus diesem Grund muss der Grenzwert der Berührungsspannung auf 25 V eingestellt werden.

▲ Parameters	ts 🕻 🚺	15:10	
l dN	<	30 mA	>
Туре		A	>
Use		fixed	>
Selectivity		G	>
Limit Uc(Uc)		25 V	>

- 6 Um RCD Funktionen in einem IT Erdungssystem zu messen, müssen wir die Fehlerschleife simulieren. Dies kann im Application Trainer erreicht werden, indem eine Fehlerschleife zwischen zwei Stromkreisen erzeugt wird. Um eine solche Situation zu erzeugen, verbinden Sie den Leiter (schwarzes Kabel in Abbildung 2-26) und den Neutralleiter (blaues Kabel in Abbildung 2-26) Kabel mit Leitung1 und Leitung2 des ersten Stromkreises. Verbinden Sie dann das PE-Kabel (grünes Kabel in Abbildung 2-26) mit einem der Leiter des zweiten Stromkreises wie in Abbildung 2-26dargestellt.
- 7 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Im Normalfall sollte die Berührungsspannung deutlich unter 1 V liegen (für weitere Informationen, siehe Kapitel RCD Prüfung der Auslöse-Berührungsspannung), während die Auslösezeit und der Auslösestrom innerhalb der in den Kapiteln RCD Prüfung der Auslösezeit und RCD Prüfung des Auslösestroms beschriebenen Grenzen liegen sollten.

In unserem Fall liegen die Ergebnisse für alle drei Tests innerhalb der erwarteten Grenzen.

Ъ г	RCD Uc	10:31	SRCD t	13:15
	03	· · · · · ·	155 🗸	
Uc	UIJV			
RI	7Ω		Uc 0.6 V	
l dN Type	30 mA A	?	l dN 30 mA x ldN 1 Phase (+)	?
Use Limit Uo	fixed c(Uc) 25 V	L PE N ● 237 ● 0 0 237 ● 111	Type A Use fixed	

Nach den Auslösezeit- und Auslösestromprüfungen wird der RCD ausgelöst, wie es für die beiden Prüfungen beabsichtigt ist. Stellen Sie sicher, dass der RCD vor jedem Test zurückgesetzt wird.

Anstatt alle drei genannten Prüfungen einzeln durchzuführen, kann ein vordefinierter RCD *AUTO SEQUENCE*[®] Test (**RCD Auto**) angewendet werden. Der Auto Test führt alle drei Tests nacheinander aus. Der Tester muss den RCD nur jedes Mal zurücksetzen, wenn er ausgelöst wurde, um mit dem Test fortzufahren.

2.5 Isolationsüberwachungsgeräte und Messung von Einzelfehlerableitströmen

2.5.1 Hintergrund der Messung

Abbildung 2-28: Schaubild für IMD und Einzelfehler Ableitstrommessungen

Abbildung 2-29: Messen von ISFL und IMD in einem IT System

2.5.1.1 Einzelfehlerableitstrom (I_{SFL})

I_{SFL} wird zur Bewertung der Wirksamkeit eines IT Erdungssystems verwendet, das während eines einzelnen Fehlers in ein TT System umgewandelt wird. Der Zweck dieses Tests besteht darin, zu überprüfen, ob die Berührungsspannungen während eines einzelnen Fehlerzustands innerhalb der Sicherheitsgrenzwerte bleiben. Die Ableit- / Fehlerströme werden während des einzelnen Fehlers um einen bestimmten

Betrag erhöht und können somit die Grenzwerte überschreiten. Das berechnete Ergebnis U_{CSF1} gibt die erwartete Berührungsspannung bei einem Einzelfehler zurück.

Typische Messungen und Berechnungen:

- ISFL1, ISFL2, ISFL3 für Einzel- oder Gruppenerdung
- ICSF1, ICSF2, ICSF3 (berechnet) für jede Einzel- oder Gruppenerdung

Die Erdungswiderstände von Einzel- und Gruppenerdungen müssen für die U_{CSF} Berechnung bekannt sein:

$$U_{CSFx} < (R_{E_{LOCAL}} + R_{PEC_{LOCAL}}) \cdot I_{SFLx} = 50 (25) V$$

mit:

U_{CSF} – Berührungsspannungen bei Einzelfehler an der Erdung (berechnet).

I_{SFL} – Einzelfehlerableitstrom (gemessen).

- RE_LOCAL Erdungswiderstand jeder einzelnen oder Gruppenerdung (gemessen).
- R_{E_LOCAL} Schutzleiterwiderstand (PE) jeder einzelnen Erdung oder Gruppenerdung (gemessen).

2.5.1.2 Isolationsüberwachungsgerät (IMD)

IMDs und andere Überwachungsgeräte enthalten üblicherweise eine Selbsttest-Option für einen Alarmschaltkreis. Die Alarmschaltung kann durch Anlegen eines einstellbaren Widerstandes zwischen Leitung und PE Leiter genau überprüft werden. Bei der Messung der IMD in einem IT Erdungssystem können wir die Reaktion der IMD messen, indem wir entweder den Widerstand oder den Strom im Stromkreis senken. In jedem Fall sind die erlaubten IMD-Werte:

- 30 k $\Omega \le R_{\text{GEMESSEN}} \le 50 \text{ k}\Omega$
- $I_{GEMESSEN} \leq 4,4 \text{ mA}$

Bei allen Messwerten, die zwischen diesen Grenzwerten liegen löst das IMD keinen Ton-Alarm aus. Alle Messwerte, die außerhalb dieser Grenzwerte liegen, müssen einen Fehler erzeugen.

2.5.2 Übungen

2.5.2.1 Übung Nr. 2.5-1: Messung von Einzelfehlerabeitströmen (ISFL)

Messverfahren

1 Um die Einzelfehlerströme zu messen, wählen Sie zuerst die Funktion IsFL im Abschnitt Andere.

2 Stellen Sie den maximal zulässigen Kurzschlussstrom auf beiden Leitungen ein, indem Sie in die untere, dunkelgraue Ecke klicken.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den Leiter2 und das Phasenkabel L an den Leiter1.

4 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

In einer normalen Situation, in der keine Fehler vorhanden sind, sollte der gemessene Einzelfehlerstrom deutlich unter dem definierten Grenzwert (3,5 mA) liegen, wie in der folgenden Abbildung zu sehen ist.

Erwartete Ergebnisse mit einem simulierten Fehler

Es gibt zwei mögliche Fehler, die mit dem Application Trainer simuliert werden können:

• Um einen Einzelfehlerableitstrom einzuleiten, aktivieren Sie den Schalter **S16**.

• Um einen Fehlerstrom zwischen den L1 und dem PE-Leiter zu simulieren, aktivieren Sie den Schalter **S28**.

Exercises	Switch	Function	Site of error	ON	OFF
	S15	R LOW / IMD	Π F3/2 PE outlet	> 20 Ω	<1Ω
	S16	ISFL / IMD	IT F3/2 ISFL	approx. 6 mA (@ 230 V) approx. 3 mA (@ 115 V)	< 1.3 mA
m	S17	RLOW	Π PE ref.	approx. 3.3 Ω	< 1 Ω
Conn	S18	R LOW	TN/TT F1/4 PE light	> 20 Ω	<1Ω
ectior	S19	R LOW / Z LOOP	TN/TT F1/2 PE outlet (3-ph.)	approx. 3.4 Ω	<1Ω
5	S20	R LOW / Z LOOP	TN/TT F2/2 PE outlet	> 2.3 Ω	<2Ω
	S21	RLOW	MPE / PE Gas	approx. 2.2 Ω	<1Ω
	S22	RLOW	MPE / PE Heat inst.	approx. 3.3 Ω	< 1 Ω
	S27	R _{iso}	IT F3/1 L1/L2 outlet	approx. 0.45 MΩ	> 200 MΩ
=	S28	ISFL / IMD	IT F3/1 L2/PE outlet	approx. 3 mA	< 1 mA
nsulatior	S29	R _{ISO} / I _Δ	TN/TT F2/2 L1/PE outlet	approx. 0.05 MΩ approx. 5.1 mA (@230 V) approx. 2.5 mA (@115 V)	> 200 MΩ < 3.5 mA
n resis	S 30	R _{ISO}	TN/TT F2/2 L1/PE outlet	capacitive 0.45 MΩ	> 200 MΩ
stance	S31	R _{ISO} / VARISTOR	TN/TT SPD GAS / PE	shorted	U _{SPD} approx. 150 V
	S 32	R _{ISO}	TN/TT F1/2 L2/N outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ
	<mark>S33</mark>	R _{ISO}	TN/TT F1/2 L1/L2 outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ

Abbildung 2-30: ISFL simuliert Fehler in einem IT System

In beiden Fällen erhöhten sich die gemessenen Fehlerströme über den zulässigen Wert, was bedeutet, dass die Kontaktspannung während des Einzelfehlerzustands über dem Sicherheitsgrenzwert liegt. Wie in diesem Fall zu erwarten ist, sind die Tests fehlgeschlagen.

2.5.2.2 Übung Nr. 2.5-2: Überprüfung von Isolationsüberwachungsgeräten (IMD)

Messverfahren

1 Um die Einzelfehlerableitströme zu messen, wählen Sie zuerst die Funktion **IMD** im Abschnitt **Andere**.

2 Stellen Sie den minimal zulässigen Widerstand oder den maximal zulässigen Kurzschlussstrom auf beiden Leitungen ein, indem Sie in die untere linke dunkelgraue Ecke klicken.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den Leiter2 und das Phasenkabel L an den Leiter1.

4 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

In einer normalen Situation gibt das IMD eine Warnung aus, wenn der maximale Ableitstrom über 4,4 mA steigt (wenn Strom getestet wird) oder der Fehlerwiderstand unter 35 k Ω fällt (wenn der Erdungswiderstand getestet wird). Wenn der Alarm innerhalb der spezifizierten Werte ertönt, sollte der Test als bestanden markiert werden, andernfalls als fehlgeschlagen.

Im linken Bild stellen wir den maximal zulässigen Ableitstrom auf 4,4 mA ein. Da wir angaben, dass der Alarm ertönte, als den Grenzwert überschritten wurde, war die Prüfung (I_{GEMESSEN} > 4,4 mA) bestanden. Gleiches gilt für den minimal zulässigen Erdungswiderstand. Der IMD Alarm ertönte, nachdem der Fehlerwiderstand 35 k Ω erreicht hatte. In beiden Fällen kann es vorkommen, dass die Taste zur Bestätigung des IMD Alarms zu spät gedrückt wurde und das Gerät bereits mit dem nächsten Wert weiter gemacht hat.. In diesem Fall wird empfohlen, beide Tests manuell durchzuführen.

Erwartete Ergebnisse mit einem simulierten Fehler

Bei der Simulation eines Fehlers am PE-Leiter Ist der Schutzleiter vom Stromkreis getrennt. In diesem Fall zeigt der IMD Test keinen Unterschied in der Messung. Um den PE-Fehler einzuschalten, aktivieren Sie den Schalter **S15**im Application Trainer. Um den I_{SFL} Fehler am IMD Gerät zu simulieren, aktivieren Sie den Schalter **S16**.

Exercises	Switch	Function	Site of error	ON	OFF
	S15	R LOW / IMD	IT F3/2 PE outlet	> 20 Ω	<1Ω
-	S16	ISFL / IMD	IT F3/2 ISFL	approx. 6 mA (@ 230 V) approx. 3 mA (@ 115 V)	< 1.3 mA
m	S17	RLOW	Π PE ref.	approx. 3.3 Ω	<10
Conn	S18	RLOW	TN/TT F1/4 PE light	> 20 Ω	<1Ω
ectio	S19	R LOW / Z LOOP	TN/TT F1/2 PE outlet (3-ph.)	approx. 3.4 Ω	<1Ω
n	S20	R LOW / Z LOOP	TN/TT F2/2 PE outlet	> 2.3 Ω	<2Ω
	S21	RLOW	MPE / PE Gas	approx. 2.2 Ω	<1Ω
	S22	RLOW	MPE / PE Heat inst.	approx. 3.3 Ω	<10

Abbildung 2-31: IMD simulierter Fehler in einem IT System

U	ISO	RLOW	RCD	LOOP	LINE	EARTH	OTHER
♪ IMD		(13:09	♪ IMD			(13:11
R1 3	5 kΩ Ι'	1 6.8 mA		R1 3	35 κΩ	I1 6.8	mA 🔛
R2 3	5 kΩ Ι	2 6.8 mA	~×	R2 7	70 κΩ	12 3.4	mA 🔨
		. 🗸				_ >	<
Test	Auto I			Test	A	uto I	
lmax(l1,l2)	4.4 mA		444	lmax(11,12)	4.4	4 mA	

Da der Schalter S15 den PE Leiter abschaltet, erkennt der IMD-Test keinen Fehler, das ist korrekt. Es wird empfohlen, die Einzelfehler Ableitstromprüfung (I_{SFL}) und den IMD Test nacheinander durchzuführen, um festzustellen, ob ein Fehler im Stromkreis vorliegt.

2.6 Isolationswiderstandsmessung

Abbildung 2-32: Schaubild für Isolationswiderstandsmessungen

Abbildung 2-33: Isolationswiderstandsmessung am Verteiler - alle Stromkreise eingeschaltet

Abbildung 2-34: Isolationswiderstandsmessung am Verteiler - ausschalten der Stromkreise während der Messung

2.6.1 Hintergrund der Messung

Dieser Test offenbart Isolationsfehler, die durch Verschmutzung, Feuchtigkeit, Verschlechterung von Isolationsmaterialien usw. verursacht werden. Der Isolationswiderstand soll gemessen werden zwischen

- Leitern.
- Leiter und PE-Leiter
- Leiter und Neutralleiter
- Neutralleiter und Schutzleiter

Netznennspannung	Prüfspannung (VDC)	Isolationswiderstand (MΩ)
SELV und PELV	250	≥ 0,5
Installationen mit Nennspannungen bis einschließlich 500 V, inklusive FELV	500	≥ 1,0
Über 500 V	1000	≥ 1,0

Tabelle 2.-2: Grenzwerte Isolationswiderstand

- Kapazitäten in der Anlage (Kabel, angeschlossene Geräte) können kapazitive Ableitströme verursachen. Der kapazitive Anteil der Impedanz wird im Isolationstest nicht berücksichtigt, da er mit Gleichstrom durchgeführt wird.
- Im Normalfall liegt der Isolationswiderstand vor allem bei Neuinstallationen weit über den vorgegebenen Grenzwerten. Wenn das Ergebnis nahe oder unter dem erforderlichen minimalen Isolationswiderstand liegt:

- Wiederholen Sie die Messung mit einer längeren Messzeit oder führen Sie einige Tests durch.
- Prüfen Sie, ob Lasten / Verbraucher getrennt und / oder ausgeschaltet sind, Überspannungsschutzgeräte entfernt sind und die Beleuchtung ausgeschaltet ist.
- Wenn es Anzeichen von Staub und Feuchtigkeit gibt, reinigen und trocknen Sie die kritischen Teile.
- Wenn Überspannungsschutzgeräte nicht entfernt werden können, kann die Prüfspannung auf 250 VDC reduziert werden. In diesem Fall muss der Grenzwert für den Isolationswiderstand mindestens 1 MΩ betragen.
- Testen Sie einzelne Teilstromkreise, um die problematische Stelle zu finden (durch Trennen der Leistungsschalter, Entfernen der Sicherungen ...).

2.6.1.1 Isolationswiderstand einzelner Stromkreise / Anlagenteile

Speziell bei der Fehlersuche wird der Isolationswiderstand einzelner Anlagenteile überprüft. In diesem Fall sollten die entsprechenden Sicherungen / Schalter ausgeschaltet werden, um das zu beobachtende Installationsteil zu isolieren.

Abbildung 2-35: Isolationsprüfung wird am Verteiler und Steckdose durchgeführt

2.6.2 Übungen

Bevor Sie einen Test durchführen, prüfen Sie, ob ein RCD vorhanden ist. Wenn ein RCD vorhanden ist, trennen Sie es sonst können keine Tests durchgeführt werden.

2.6.2.1 Übung Nr. 2.6-1: R_{ISO} in einer 1-phasigen Steckdose in einem TN/TT System

Messverfahren

1 Um den Isolationswiderstand zu messen, wählen Sie zuerst die Funktion **R**_{Iso} im Abschnitt **ISO**.

2 Stellen Sie den minimal zulässigen Isolationswiderstand ein, indem Sie in die untere linke dunkelgraue Ecke klicken.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den Leiter2 und das Phasenkabel L an den Leiter1.

Überprüfen Sie während der Messung den Isolationswiderstand zwischen allen Leitern (Lx-Ly, L-N, L-PE. N-PE).

4 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Normalerweise sollte der Isolationswiderstand in einem Schaltkreis deutlich über 1 M Ω und in einer PELV/SELV Umgebung über 0,5 M Ω liegen.

Erwartete Ergebnisse mit einem simulierten Fehler

Simulieren Sie einen Isolationswiderstand, indem Sie den Schalter **S29** im Application Trainer aktivieren. Dies führt zu einem Fehler zwischen den Leitern L1 und PE.

Exercises	Switch	Function	Site of error	ON	OFF
	S27	R _{ISO}	IT F3/1 L1/L2 outlet	approx. 0.45 MΩ	> 200 MΩ
	S28	ISFL / IMD	IT F3/1 L2/PE outlet	approx. 3 mA	< 1 mA
Insulation r	S29	R _{ISO} /I <u>A</u>	TN/TT F2/2 L1/PE outlet	approx. 0.05 MΩ approx. 5.1 mA (@230 V) approx. 2.5 mA (@115 V)	> 200 MΩ < 3.5 mA
esista	S 30	R _{ISO}	TN/TT F2/2 L1/PE outlet	capacitive 0.45 MΩ	> 200 MΩ
nce	S31	R _{ISO} / VARISTOR	TN/TT SPD GAS / PE	shorted	U _{SPD} approx. 150 V
	<mark>S</mark> 32	R _{ISO}	TN/TT F1/2 L2/N outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ
	<mark>S</mark> 33	R _{ISO}	TN/TT F1/2 L1/L2 outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ

Abbildung 2-36: RISO simulierter Fehler zwischen Phasen- und PE-Leitern

Wie aus dem Bild oben zu sehen ist, bewirkt der zusätzliche Isolationsfehler einen viel niedrigeren Isolationswiderstand als den, der erforderlich ist. Dies sagt uns, dass die Verkabelung überprüft werden sollte.

2.6.2.2 Übung Nr. 2.6-2: R_{ISO} in einem 3-phasigen TN/TT System auf der Versorgungsseite

Messverfahren

1 Um den Isolationswiderstand zu messen, wählen Sie zuerst die Funktion **R**_{Iso} im Abschnitt **ISO**.

2 Stellen Sie den minimal zulässigen Isolationswiderstand ein, indem Sie in die untere linke dunkelgraue Ecke klicken.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den Leiter2 und das Phasenkabel L an den Leiter1.

Überprüfen Sie während der Messung den Isolationswiderstand zwischen allen Leitern (Lx-Ly, L-N, L-PE. N-PE).

4 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Führen Sie diese Messung am Verteiler durch. Nachdem Sie den RCD deaktiviert haben, messen Sie alle möglichen Isolationswiderstände zwischen allen Leitern, wie oben beschrieben. Um alle mit diesem RCD verbundenen Stromkreise zu überprüfen, führen Sie einfach alle Prüfungen auf der Ausgangsseite des RCD durch. Wenn alle Prüfungen bestanden sind, ist die Isolierung zwischen allen Leitern

ausreichend. In diesem Fall sollte auf dem Display des Messgeräts das gleiche Ergebnis wie das Bild unten zeigen.

Erwartete Ergebnisse mit einem simulierten Fehler

Bei einer Installation mit einem Isolationsfehler zwischen den Leitern verringert sich der gemessene Isolationswiderstand gewöhnlich auf 103oltaje. 0,45 M Ω Um eine solche Situation zu messen, aktivieren Sie den Schalter **S32** wie in Abbildung 2-37 dargestellt.

Exercises	Switch	Function	Site of error	ON	OFF
	S27	R _{ISO}	IT F3/1 L1/L2 outlet	approx. 0.45 MΩ	> 200 MΩ
=	S28	ISFL / IMD	IT F3/1 L2/PE outlet	approx. 3 mA	< 1 mA
nsulation resi	S29	R _{ISO} / I _A	TN/TT F2/2 L1/PE outlet	approx. 0.05 MΩ approx. 5.1 mA (@230 V) approx. 2.5 mA (@115 V)	> 200 MΩ < 3.5 mA
	S 30	R _{iso}	TN/TT F2/2 L1/PE outlet	capacitive 0.45 MΩ	> 200 MΩ
stance	S31	R _{ISO} / VARISTOR	TN/TT SPD GAS / PE	shorted	U _{SPD} approx. 150 V
e	S 32	R _{ISO}	TN/TT F1/2 L2/N outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ
	S 33	R _{iso}	TN/TT F1/2 L1/L2 outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ

Abbildung 2-37: R_{ISO} simulierter Fehler zwischen Phase und Neutralleiter

Der schnellste Weg, den Fehler zu finden, ist das Messen von R_{ISO} im Verteiler auf die gleiche Weise wie zuvor im (Kapitel Erwartete Ergebnisse oben). Nachdem wir einen Fehler im System gesehen haben, aktivieren wir das Messgerät für die kontinuierliche Messung. Wir messen jetzt nur zwischen den Leitern, die einen Fehler im Stromkreis aufweisen, indem wir einfach alle nachfolgenden Sicherungen und RCDs in unserem Mess-Subsystem deaktivieren. Die Sicherung / RCD, wo der Fehler bleibt, ist der fehlerhafte Schaltkreis.

Wie aus dem Bild oben zu sehen ist, bewirkt der zusätzliche Isolationsfehler einen viel niedrigeren Isolationswiderstand als den, der erforderlich ist. Dies sagt uns, dass die Verkabelung überprüft werden sollte.

2.6.2.3 Übung Nr. 2.6-3: R_{ISO} in einem IT System

Messverfahren

1 Um den Isolationswiderstand zu messen, wählen Sie zuerst die Funktion **R**_{Iso} im Abschnitt **ISO**.

2 Stellen Sie den minimal zulässigen Isolationswiderstand ein, indem Sie in die untere linke dunkelgraue Ecke klicken.

3 Wenn ein Schuko Commander verwendet werden soll, schließen Sie den Commander an der entsprechenden Steckdose an. Wenn die Kabel verwendet werden, schließen Sie alle Kabel entsprechend an - das PE-Kabel an den Schutzleiter, das N-Kabel an den Leiter2 und das Phasenkabel L an den Leiter1.

Überprüfen Sie während der Messung den Isolationswiderstand zwischen allen Leitern (Lx-Ly, L-N, L-PE. N-PE).

4 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Die Messung des Isolationswiderstandes in einem IT System erfolgt zwischen den beiden Leitern. Normalerweise liegt der Isolationswiderstand in einem Schaltkreis weit über 1 M Ω .

Erwartete Ergebnisse mit einem simulierten Fehler

Um einen Fehler im Isolationswiderstand in einem IT System einzufügen, aktivieren Sie den Schalter **S27**. Der gemessene R_{ISO} sollte nun 1050ltaje sein. 0,45M Ω

Switch Exercises	Function	Site of error	ON	OFF
---------------------	----------	---------------	----	-----

<mark>> 200 MΩ</mark>

		ISO	RLOW							
	1									
	S27	S27 R _{ISO}		IT F3/1 L1/L2 outlet		approx. 0.45 MΩ >		> 200	<mark>> 200 ΜΩ</mark>	
_	S28	ISFL / IMD		IT F3/1 L2/PE outlet		approx. 3 mA		< 1 mA		
<mark>nsulatio</mark> i	S29	R _{ISO} / I _A		TN/TT F2/2 L1/PE outlet		approx. 0.05 MΩ approx. 5.1 mA (approx. 2.5 mA (@230 V) @115 V)	> 200 < 3.5) MΩ mA	
n resis	S 30	R _{iso}		TN/TT F2/2 L1/PE outlet		capacitive 0.45 N	MΩ	> 200	ΜΩ	
stance	S31	R _{ISO} / VARISTOR		TN/TT SPD GAS / PE		shorted		U _{SPD}	approx. 150 V	
	S32	R _{ISO}		TN/TT F1/2 L2/N outlet (3-ph	ı.)	approx. 0.45 MΩ		> 200) ΜΩ	

Abbildung 2-38: R_{ISO} simulierter Fehler zwischen Phasen-Leitern in einem IT System

approx. 0.45 MΩ

TN/TT F1/2

L1/L2 outlet (3-ph.)

Wie aus dem Bild oben zu sehen ist, bewirkt der zusätzliche Isolationsfehler einen viel niedrigeren Isolationswiderstand als den, der erforderlich ist. Dies sagt uns, dass die Verkabelung überprüft werden sollte.

2.6.2.4 Übung Nr. 2.6-4: RISO Varistor Prüfung

Messverfahren

S33 R_{ISO}

1 Um den Isolationswiderstand zu messen, wählen Sie zuerst die Funktion **R**_{Iso} im Abschnitt **ISO**.

2 Stellen Sie den minimal zulässigen Isolationswiderstand ein, indem Sie in die untere linke dunkelgraue Ecke klicken.

3 Während dieser Prüfung dürfen nur Kabel verwendet werden, bei denen die PEund N-Kabel miteinander verbunden sind und über dem Varistor mit der GAS-Leitung verbunden sind. Das Leiter-Kabel ist mit der GAS-Leitung unter dem Varistor verbunden, wie in der Abbildung unten und Abbildung 2-39dargestellt.

Abbildung 2-39: Isolationswiderstandsmessung am Varistor

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Der Zweck dieser Übung besteht darin, zu sehen, ob der Varistor seine Funktion in einem Gebäude erfüllt, in dem Gasleitungen installiert sind. Bei niedriger Spannung hat ein Varistor einen hohen elektrischen Widerstand und der Strom fließt normal über die Gasleitung. Im Falle eines Überstroms (z. B. Blitzschlag) nimmt der

elektrische Widerstand des Varistors ab und der gesamte Strom fließt dann am Gasrohr vorbei und schützt so das Gebäude vor möglichen Schäden (z. B. Feuer).

Bild oberhalb zeigt normalen Isolationswiderstand.

Erwartete Ergebnisse mit einem simulierten Fehler

In diesem Fall simulieren wir einen Fehler, bei dem die Kabel, die mit dem Varistor verbunden sind, einen Isolationsfehler aufweisen, der dazu führt, dass der Varistor nicht richtig funktioniert. Im schlimmsten Fall kann eine solche Situation zu einem Brandunfall führen.

Exercises	Switch	Function	Site of error	ON	OFF
	S27	R _{ISO}	Π F3/1 L1/L2 outlet	approx. 0.45 MΩ	> 200 MΩ
Insulation resistance	S28	ISFL / IMD	IT F3/1 L2/PE outlet	approx. 3 mA	< 1 mA
	S29	R _{ISO} / I _A	TN/TT F2/2 L1/PE outlet	approx. 0.05 MΩ approx. 5.1 mA (@230 V) approx. 2.5 mA (@115 V)	> 200 MΩ < 3.5 mA
	S 30	R _{ISO}	TN/TT F2/2 L1/PE outlet	capacitive 0.45 MΩ	> 200 MΩ
	S 31	R _{ISO} / VARISTOR	TN/TT SPD GAS / PE	shorted	U _{SPD} approx. 150 V
	S32	R _{ISO}	TN/TT F1/2 L2/N outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ
	<mark>S</mark> 33	R _{ISO}	TN/TT F1/2 L1/L2 outlet (3-ph.)	approx. 0.45 MΩ	> 200 MΩ

Abbildung 2-40: RISO simulierter Fehler in der Varistor Verkabelung

Wie aus dem Bild oben zu sehen ist, bewirkt der zusätzliche Isolationsfehler einen viel niedrigeren Isolationswiderstand als den, der erforderlich ist. Dies sagt uns, dass die Verkabelung überprüft werden sollte.

2.7 Durchgangsprüfung von Leitern

Abbildung 2-41: Schaubild für Durchgangsprüfungen

Abbildung 2-42: Durchgangsprüfung zwischen MPE (Hauptpotentialausgleich) und Steckdose

Abbildung 2-43: Durchgangsprüfung zwischen Verteiler und Steckdose

2.7.1 Hintergrund der Messung

Die Standard-Durchgangsmessung wird zwischen der PE-Sammelschiene und den freiliegenden Metallteilen durchgeführt (PE-Anschlüsse an Steckdosen, Schaltern, festen Verbindungen, PE-Anschluss der Wasserinstallation, CATV, Beleuchtungssystemanschluss, externe Antenne ...).

Im Allgemeinen muss der Widerstand so niedrig wie möglich und in Übereinstimmung mit der Länge und dem Querschnitt des Leiters sein.

$$R_{CON} = \rho \frac{1}{A} \left[\Omega \right]$$

- R_{CON} Leiter Widerstand
- ρ Spezifischer Widerstand des Leitermaterials (für Cu: 0.0172 Ω mm²/m)
- *I Länge des Leiters [m]*
- A Leiterquerschnitt [mm²].

Da eine genaue Berechnung des Leiterwiderstandes ziemlich schwierig ist, werden oft 1,0 Ω , 2,0 Ω oder ähnliche Werte als Grenzwerte angesehen.

Hinweise:

- Wenn der Widerstand niedriger ist als auf der Basis der Leitergröße und -länge erwartet, kann dies das Ergebnis eines unbekannten parallelen Pfades sein und muss überprüft werden!

- Für die Standardmessung (manchmal sehr lang) werden Verlängerungsleitungen verwendet. In diesem Fall muss der Widerstand der Messleitungen vom Ergebnis abgezogen werden (diese Eigenschaft ist normalerweise in Installationstester integriert).
- Das Problem der parallelen Pfade muss berücksichtigt werden.

Abbildung 2-44: Standard Durchgangsprüfung

2.7.2 Übungen

2.7.2.1 Übung Nr. 2.7-1: Durchgangsprüfung in einem TN/TT System

Messverfahren

1 Um den Isolationswiderstand zu messen, wählen Sie zuerst die Funktion **R**₂₀₀ im Abschnitt **Durchgang (RLOW)**. Dies ist eine DC Messung.

2 Stellen Sie den minimal zulässigen Isolationswiderstand ein, indem Sie in die untere linke dunkelgraue Ecke klicken.

Vor jeder Durchführung einer Messung muss das Messgerät kalibriert werden. Verbinden Sie zuerst den Schutzleiter und den Neutralleiter, um ein PEN-Kabel herzustellen, verbinden Sie dann die Prüfspitzen des PEN- und des Phasenkabels und führen Sie die Kalibrierung durch (rechtes orange Quadrat im Bild oben). Auf diese Weise wird der Widerstand der Kabel bei der Messung des Leiterdurchgangs entfernt. Sobald das Instrument kalibriert ist, erscheint ein "CAL" -Symbol auf dem Bildschirm (mittleres grünes Quadrat im Bild oben).

3 Während dieser Messung dürfen nur diese Kabel verwendet werden. Verbinden Sie zuerst den Schutzleiter und den Neutralleiter, um ein PEN-Kabel herzustellen, und platzieren Sie es an einem Bezugspunkt irgendwo im Gebäude (z. B. dem MPE). Überprüfen Sie alle PE-Leitungen an allen verfügbaren Steckdosen mit dem Phasenleiter.

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Normalerweise muss der gemessene Durchgangswiderstand unter 2 Ω liegen. Dieser Grenzwert gilt immer, wenn der Durchgang in einem RCD geschützten System aemessen wird. Wenn kein RCD vorhanden ist. der zulässige ist Durchgangswiderstand normalerweise viel niedriger, da er von der im gemessenen Stromkreis verwendeten Sicherung abhängt (z. B. in einer durch einem C20A Sicherung geschützten Stromkreis würde der maximal zulässige Durchgangswiderstand $0,25\Omega$ betragen).

Da der Durchgang in einem RCD geschützten TN System gemessen wurde, gilt der gemessene Wert als bestanden.

Erwartete Ergebnisse mit einem simulierten Fehler

Ein typischer Fehler bei der Durchgangsmessung wäre, wenn der Widerstand des PE-Leiters über 2Ω liegen würde. Um einen solchen Fehler zu simulieren, aktivieren Sie den Schalter **S19** im Application Trainer.

Exercises	Switch	Function	Site of error	ON	OFF
	S15	R LOW / IMD	IT F3/2 PE outlet	> 20 Ω	<1Ω
_	S16	ISFL / IMD	IT F3/2 ISFL	approx. 6 mA (@ 230 V) approx. 3 mA (@ 115 V)	< 1.3 mA
m	S17	RLOW	Π PE ref.	approx. 3.3 Ω	<1Ω
Connection	S18	R LOW	TN/TT F1/4 PE light	> 20 Ω	< 1 Ω
	S19	R LOW/ZLOOP	TN/TT F1/2 PE outlet (3-ph.)	approx. 3.4 Ω	< 1 Ω
	S20	R LOW / Z LOOP	TN/TT F2/2 PE outlet	> 2.3 Ω	< 2 Ω
	S21	RLOW	MPE / PE Gas	approx. 2.2 Ω	<10
	S22	RLOW	MPE / PE Heat inst.	approx. 3.3 Ω	<1Ω

Abbildung 2-45: Simulierter Durchgangsfehler

In einem TN System führte der simulierte Fehler zu einem zusätzlichen Widerstand von 3,4 Ω . Da der Grenzwert für Systeme mit installiertem RCD 2 Ω beträgt, ist der Test fehlgeschlagen. Das Messgerät hat das Ergebnis richtig interpretiert.

2.7.2.2 Übung Nr. 2.7-2: Messung von R_{PE} Durchgang in einem TN/TT System

Messverfahren

1 Um den Isolationswiderstand zu messen, wählen Sie zuerst die Funktion **R**₂₀₀ im Abschnitt **Durchgang (RLOW)**. Dies ist eine AC Messung.

2 Stellen Sie den minimal zulässigen Isolationswiderstand und das Vorhandensein eines RCDs ein, indem Sie in die untere, dunkelgraue Ecke klicken.

3 Während dieser Messung darf nur der Schuko Commander verwendet werden. Stecken Sie den Commander in die ausgewählte Steckdose. Hier wird der Widerstand zwischen Neutralleiter und Schutzleiter gemessen.

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Abhängig von der Auswahl des Vorhandenseins eines RCDs schaltet das System zwischen den Messverfahren um, d. H. verwendet einen anderen Strom, um den RCD, falls vorhanden, nicht auszulösen. In beiden Fällen muss der gemessene Durchgangswiderstand unter 2Ω liegen. Die Auslegung des R_{PE} Tests hängt auch von der Art des verwendeten Erdungssystems ab. In einem TN System messen wir den Widerstand von PE-Leitern, während wir in einem TT Erdungssystem den tatsächlichen Erdungswiderstand messen.

Wie aus den obigen Ergebnissen hervorgeht, liegt die Messung in einem TN System (links) unter dem Schwellenwert und der Test wurde bestanden. Der Test in einem TT System (rechts) ist als fehlgeschlagen markiert. Da dieser Test tatsächlich den Erdwiderstand misst, sollte das Testergebnis als bestanden gelten, unabhängig davon, was das Messgerät uns sagt. Das Messgerät unterscheidet nicht zwischen TN und TT Erdungssystemen, so dass es die Art des verwendeten Erdungssystems nicht vorhersagen kann. Es ist dem Benutzer überlassen, den Grenzwert für den RPE Test festzulegen, damit das Messgerät die Ergebnisse richtig interpretiert.

Erwartete Ergebnisse mit einem simulierten Fehler

Ein typischer Fehler bei der Durchgangsmessung wäre, wenn der Widerstand des PE-Leiters über 2Ω liegen würde. Um einen solchen Fehler zu simulieren, aktivieren Sie den Schalter **S19** im Application Trainer.

Exercises	Switch	Function	Site of error	ON	OFF
	S15	R LOW / IMD	IT F3/2 PE outlet	> 20 Ω	<1Ω
	S16	ISFL / IMD	IT F3/2 ISFL	approx. 6 mA (@ 230 V) approx. 3 mA (@ 115 V)	< 1.3 mA
m	S17	RLOW	Π PE ref.	approx. 3.3 Ω	<1Ω
Connection	S18	R LOW	TN/TT F1/4 PE light	> 20 Ω	<1Ω
	S19	R LOW / Z LOOP	TN/TT F1/2 PE outlet (3-ph.)	approx. 3.4 Ω	< 1 Ω
	S20	R LOW / Z LOOP	TN/TT F2/2 PE outlet	> 2.3 Ω	<2Ω
	S21	RLOW	MPE / PE Gas	approx. 2.2 Ω	<1Ω
	S22	RLOW	MPE / PE Heat inst.	approx. 3.3 Ω	<10

Abbildung 2-46: Simulierter Durchgangsfehler

In diesem Fall haben wir einen Fehler simuliert, der in einem TN System einen zusätzlichen Widerstand von $3,4~\Omega$ eingefügt hat. Der Test ist wie erwartet fehlgeschlagen.

2.8 Erdungswiderstandsmessungen

Abbildung 2-47: Schaubild für Erdungswiderstandsmessungen

Abbildung 2-48: Erdungswiderstandsmessung mit der 3-Leiter-Methode

Abbildung 2-49: Erdungswiderstandsmessung in einem TT-System mit der 2-Zangen-Methode

Abbildung 2-50: Prüfung der Blitzschutzanlage

2.8.1 Hintergrund der Messung

2.8.1.1 Haupterdung

Der Installations- / Verteilungspunkt oder die Stromquelle wird über die sogenannte Haupterdung geerdet. Die Erdung erfolgt mit Metallelektrode (n), die im Boden realisiert sind. Die Größe und Komplexität der Erdungsanordnung hängt von der Anwendung ab (Größe des Objekts, spezifischer Widerstand des Erdreichs, maximal zulässiger Erdungswiderstand usw.).

In TN Installationen wird die Erdung an den Quell- und/oder Verteilungspunkten realisiert. Die Erdungswiderstände sind normalerweise sehr niedrig (unter 1Ω).

TT Installationen haben eine eigene Haupterdung. Die Widerstände sind in der Regel höher als in TN Systemen (von wenigen Ω bis zu mehreren hundert Ω). Wegen dieser gefährlichen Fehler können Spannungen und Körperströme bei relativ niedrigen Fehlerströmen auftreten. Daher haben TT Systeme normalerweise einen zusätzlichen RCD Schutz.

2.8.1.2 Blitzschutzsysteme

Eine weitere Anwendung der Erdung sind Blitzschutzsysteme. Die Blitzableitstäbe eines Blitzschutzsystems müssen relativ niedrige Widerstände haben (zwischen 1 Ω und 10 Ω , um die Installation/Gebäude vor einem direkten Blitzeinschlag zu schützen.). Blitzschutzsysteme können sehr groß sein.

2.8.1.3 Erdschleifenprüfung, externe Quelle, keine Erdspieße

In TT-Systemen mit der Schleifenwiderstandsprüfung wird der folgende Schleifenwiderstand gemessen:

$$R_{LOOP} = R_{LH} + R_{EH} + R_{ED} + R_T \left[\Omega\right]$$

Wenn der Gesamterdungswiderstand von R_{EH} höher ist als der Widerstand R_{ED} und der Rückpfad (Widerstand von L-Leitern, Sekundärwicklung des Leistungstransformator), dann kann als Ergebnis \approx R_{EH} angesehen werden.

Diese Prüfung ist anwendbar:

- Anwendbar für TT-Systeme, bei denen der Erdungswiderstand der gemessenen Installation höher ist als der (gut geerdete) Hilfsanschlusses.
- Anwendbar in städtischen Bereichen, wenn kein geeigneter Ort für Erdspieße vorhanden ist.
- Anwendbar in Bereichen, in denen verschiedene lokale Erdungen miteinander verbunden sind, wodurch das lokale Erdungssystem sehr groß machen.

Abbildung 2-51: Zweidrahtprüfung (nur für TT Systeme) keine Erdspieße

2.8.1.4 3-Draht Prüfung des Erdungswiderstands, interner Generator, zwei Erdspieße

Die 3-Draht Prüfung ist die Standardmethode zum Prüfen des Erdungswiderstands. Sie ist die einzige Möglichkeit, wenn kein gut geerdeter Hilfsanschluss verfügbar ist. Die Messung wird mit zwei Erdspießen durchgeführt.

Der Nachteil bei Verwendung von drei Drähten ist es, dass sich der Kontaktwiderstand E des Anschlusses zum Ergebnis addiert.

Abbildung 2-52: Gesamterdungsmessung (3-Draht) – Standardmethode

Hinweise:

- Die Methode ermöglicht genaue Ergebnisse von 0 Ω bis zu mehreren 1000 Ω .
- Die Methode eignet sich nicht für sehr große oder miteinander verbundene Erdungssysteme, weil die Erdspieße dann in sehr großen Entfernungen vom Messobjekt angebracht werden müssten.
- Beim Messen einzelner Erdungswiderstände muss der gemessene Erdspieß (Erdungspunkt) vom System getrennt werden.
- Bei TN-Netzen muss der ankommende PE- bzw. PEN-Leiter abgetrennt werden!

Abbildung 2-53: Selektive Erdungsmessung – Standardmethode

 $I_{gen} = I_{RE2}$

Die obige Gleichung zeigt an, dass der Teststrom nur durch den Teilwiderstand R_{E2} fließt. in diesem Fall wird R_{E2} gemessen.

Hinweise:

• Genaue Ergebnisse ab 0 Ω , keine Einschränkung bezüglich der Anzahl der Punkte.

- Nicht geeignet f
 ür sehr gro
 ße oder miteinander verbundene Erdungssysteme, weil die Erdspie
 ße dann in sehr gro
 ßen Entfernungen vom Messobjekt angebracht werden m
 üssten.
- Wird in IT, TT oder anderen nicht angeschlossenen Erdungssystemen verwendet.

Abbildung 2-54: Drei-Drahtprüfung, zwei Erdspieße und gleichseitige Platzierung der Erdspieße

Funktionalität und Platzierung von Erdspießen

Für einen Standarderdungswiderstand werden zwei Erdspieße (Spannung und Strom) verwendet. Wegen des Spannungstrichters ist es wichtig, dass die Prüfelektroden korrekt gesetzt werden. Bei einer 3-Draht Erdungswiderstandsprüfung wird eine gleichseitige Platzierung der Erdspieße verwendet.

Abbildung 2-55: Gleichseitige Platzierung der Erdspieße

<u>Messung 1</u>

Der Abstand von geprüfter Erdungselektrode zu Strom-Erdspieß H und Spannungs-Erdspieß S muss mindestens sein: d2 (5)

Messung 2

Der Abstand von der Erdungselektrode zur Spannungs-Prüfspitze S (S') ist:

Die erste Messung erfolgt an den S- und H-Erdspießen, die in einem Abstand von d2 platziert werden. Die Anschlüsse E, Erdspieße H und S sollten ein gleichseitiges Dreieck bilden.

Für die zweite Messung muss der S-Erdspieß in gleicher Entfernung d2 auf der Gegenseite bezüglich des H-Erdspießes platziert werden. Die Anschlüsse E, Erdspieße H und S müssen wieder gleichseitiges Dreieck bilden. Der Unterschied zwischen beiden Messungen darf 10% nicht überschreiten. Wenn ein Unterschied von mehr als 10% auftritt, sollte der Abstand d2 proportional erhöht und beide Messungen wiederholt werden. Eine einfache Lösung ist, nur die Erdspieße S und H tauschen (kann an der Messgeräteseite durchgeführt werden). Das Endergebnis ist ein Durchschnitt von zwei oder mehr Teilergebnissen.

Es empfiehlt sich, die Messung mit verschiedenen Anordnungen der Erdspieße zu wiederholen. Die Erdspieße müssen auch in entgegengesetzter Richtung von der getesteten Elektrode (180 ° oder mindestens 90 °) angeordnet werden.

2.8.1.5 Erdungswiderstandsprüfung mit zwei Stromzangen

Dieses Messsystem wird zum Messen des Erdwiderstands von Erdungsstäben, Kabeln, erdverlegten Verbindungen usw. benutzt. Die Messmethode benötigt eine geschlossene Schleife, um Prüfströme erzeugen zu können.

Abbildung 2-56: Gesamterdungswiderstandsmessung mit zwei Stromzangen

Die Treiberzange injiziert eine Spannung in das Erdungssystem. Die injizierte Spannung erzeugt einen Prüfstrom in der Schleife. Der einzelne Erdungswiderstand gemessen:

$$R_{E2} + (R_{E1} || R_{E3} || R_{E4} ...) = \frac{U_{generator} \frac{1}{N}}{I_{clamn}} [\Omega]$$

- U_{generator} Interne Spannungsquelle des Prüfgeräts, treibende Spannung für die Treiberzange.
- I_{clamp} Strom durch die Fühlerzange.
- N Übersetzungsverhältnis der Treiberzange.

U ISO RLOW RCD LOOP LINE EARTH OTHER

Wenn der gesamte Erdwiderstand der parallelgeschalteten Elektroden R_{E1}, R_{E3} und R_{E4}, viel niedriger ist als der Widerstand der geprüften Elektrode Z_{E2}, kann das Ergebnis als \approx Z_{E21} angesehen werden.

Andere Einzelwiderstände können durch Umfassen anderer Elektroden mit den Stromzangen gemessen werden.

Hinweise:

- Anwendbar in komplexen Erdungssystemen mit zahlreichen parallelen Erdungselektroden.
- Anwendbar zum Messen des Erdungswiderstands in Transformatorstationen.
- Anwendbar für die Messung von Blitzschutzsystemen (Abbildung 2-57).
- Anwendbar zum Messen des Erdungswiderstandes in TN-Erdungssystemen (Abbildung 2-58).
- Besonders geeignet für städtische Bereiche.
- Kein Abtrennen der gemessenen Elektroden.
- Sehr schnelle Messung; keine Notwendigkeit, Messsonden zu setzen und die gemessenen Elektroden abzutrennen.
- Sehr genau bei Widerständen unter 10 Ω.
- Der Mindestabstand zwischen Treiber- und Sensor-Stromzange beträgt mindestens 30 cm (wenn sie nicht abgeschirmt sind).

Abbildung 2-57: Prüfsystem (einzelne Erdungsstäbe) mit zwei Stromzangen

Abbildung 2-58: Messung des Widerstands eines Objekts zu Erde mit zwei Stromzangen in einem TN System

2.8.2 Übungen

2.8.2.1 Übung Nr. 2.8-1: Erdungswiderstandsmessung mit der 3-Draht Methode

Messverfahren

1 Um den Erdungswiderstand zu messen, wählen Sie zuerst die Funktion**3W (drei Draht)** im Abschnitt **Erde**.

2 Stellen Sie den maximal zulässigen Erdungswiderstand ein, indem Sie in den Button unten links in der dunkelgrauen Ecke klicken.

Bei der Festlegung der Grenzwerte sollten folgende Schwellenwerte berücksichtigt werden:

- \circ **2** Ω überirdisch,
- o **10** Ω für das komplette System,
- \circ **20** Ω für einen einzelnen Draht oder
- **8%** des spezifischen Erdwiderstandes.
- 3 Bei dieser Art der Messung sind Kabel in Verbindung mit Erdspießen zu verwenden. Schließen Sie die Neutralleiter Leitung an den Schutzleiter oder die Erdungsstange an. Verbinden Sie die Phasen Leitung mit einem Erdspieß und die PE-Leitung mit dem anderen Erdspieß. Nachdem die Messung abgeschlossen ist, kehren Sie die Kabel um, die mit beiden Stangen verbunden sind, um eine Trichterüberlappung auszuschließen. Wenn die gemessenen Widerstände gleich sind (20% bis 30% Unterschied ist akzeptabel), ist keine Trichterüberlappung vorhanden.

Wenn der Erdungswiderstand in einem TT Erdungssystem gemessen wird, können die Erdspieße durch den Schuko-Commander ersetzt werden, da alle Messungen über die Steckdosen erfolgen können.

4 Drücken Sie die **START** Taste.

Erwartete Ergebnisse

Das erwartete Erdungswiderstandsergebnis liegt unter 10Ω . Wie aus der folgenden Abbildung zu ersehen ist, hängt das Ergebnis davon ab, ob ein TN oder TT Erdungssystem verwendet wird. Letzteres hat in der Regel 2 ~ 3 Ω höheres Ergebnis, da es auch den Widerstand des angeschlossenen Transformators misst.

ニ Earth (12:19	🗂 Earth	12:21
1 20 🗸		276 🗸	
Rc 1.0 kΩ Rp 1.0 kΩ		<mark>Rc 1.Ο kΩ Rp 1.Ο kΩ</mark>	
	?	RG Rp	?
			•••

Erwartete Ergebnisse mit einem simulierten Fehler

Bei der Erdungswiderstandsmessung im Application Trainer in einem TT System mit 3-Draht Methode können die Erdungsfehler mit **S23** und **S24** simuliert werden.

Exercises	Switch	Function	Site of error	ON	OFF
-----------	--------	----------	---------------	----	-----

	S23	R _e (classic method 3w)	Basic grounding in TT	approx. 3.3 Ω	approx. 2.6 Ω
Earth Re	S23 + S24	R _e (classic method 3w)	Basic grounding in TT	approx. 9.8 Ω	approx. 2.6 Ω
sistance R _E		R _E (classic method 3w)	Basic grounding in TT	approx. 4.8 Ω	approx. 2.6 Ω
	S24		Basic grounding in TN (on Main PE wire)	approx. 10 Ω	approx. 3.6 Ω
		R _E (2 - clamps method)	Lightning rod 1 Lightning rod 2	approx. 100 Ω approx. 10 Ω	approx. 4.7 Ω approx. 10 Ω

Abbildung 2-59: Simulierte Erdungswiderstands-Fehler

Gemessen R_E mit aktiviertem Fehler **S23** (oben links), **S24** (oben rechts) und Kombination von beiden - **S23 + S24** (unten).

2.8.2.2 Übung Nr. 2.8-2: Erdungswiderstandsmessung – zwei Stromzangen-Methode

Diese Methode ist zur Messung des Erdungswiderstands in TN Erdungssystemen oder zur Überprüfung von Blitzschutzsystemen und Erdschleifen bestimmt.

Messverfahren

1 Um den Erdwiderstand in einem TN-System oder Blitzsystemen und Erdschleifen zu messen, wählen Sie die Funktion **2-Zangen** im Abschnitt **Erde**.

2 Stellen Sie den maximal zulässigen Erdungswiderstand ein, indem Sie in den Button unten links in der dunkelgrauen Ecke klicken.

Bei der Festlegung der Grenzwerte sollten folgende Schwellenwerte berücksichtigt werden:

- \circ **2** Ω überirdisch,
- o **10** Ω für das komplette System,
- \circ 20 Ω für einen einzelnen Draht oder
- **8%** des spezifischen Erdwiderstandes.
- 3 Die Messung erfolgt mit zwei Stromzangen:
 - Stromzange (A1018) Diese Zangen messen den von den Generatorzangen induzierten Strom. Sie können auch bei der Messung von Leckströmen verwendet werden.
 - Generator Stromzange (A1019) Diese Zangen speisen Strom in die Schaltung ein und messen den Spannungsabfall.

Beide Zangen sind entweder auf der Erdungselektrode oder auf dem PE- (oder sogar) am PEN- Leiter platziert. Bei der Überprüfung von Blitzschutzsystemen und Erdschleifen werden beide Zangen mit den Blitzableitern rund um das Gebäude verbunden.

4 Drücken Sie die **START Taste**.

Erwartete Ergebnisse

Der zulässige Erdungswiderstand beträgt 10 Ω , was normalerweise in einem TN System erreicht wird. Bei der Überprüfung von Blitzschutzsystemen muss der gemessene Erdungswiderstand, um die Sicherheit zu gewährleisten, unter diesem Wert liegen.

Erwartete Ergebnisse mit einem simulierten Fehler

Bei der Erdungswiderstandsmessung in einem TN System mit der 2-Zangen-Medothe im Application Trainer ist es möglich, einen Erdungsfehler am Hauptschutzleiter zu simulieren, indem der Schalter **S24** aktiviert wird.

Exercises	Switch	Function	Site of error	ON	OFF
	S23	R _E (classic method 3w)	Basic grounding in TT ●	approx. 3.3 Ω	approx. 2.6 Ω
Earth Resistance R _E	S23 + S24	R _E (classic method 3w)	Basic grounding in TT ●	approx. 9.8 Ω	approx. 2.6 Ω
	S24	R _E (classic method 3w)	Basic grounding in TT ●	approx. 4.8 Ω	approx. 2.6 Ω
			Basic grounding in TN (on Main PE wire)	approx. 10 Ω	approx. 3.6 Ω
		R _E (2 - clamps method)	Lightning rod 1 Liahtning rod 2	approx. 100 Ω approx. 10 Ω	approx. 4.7 Ω approx. 10 Ω

Abbildung 2-60: Simulierter Erdungswiderstandsfehler in einem TN Erdungssystem

Wie aus dem Bild unten zu sehen ist, hat der Erdungswiderstand die Grenze von 10 Ω nicht überschritten, auch wenn der Fehler im Application Trainer aktiviert wurde. Das Messgerät hat korrekt entschieden, das die Prüfung erfolgreich bestanden ist. Eine solche Messung ohne Fehler kann ein tatsächlicher realer Fall sein, da der Erdungswiderstand tatsächlich durch den spezifischen Erdwiderstand beeinflusst wird.

AD 2 – MI 3399 PQA Leitung und Spannungsqualität Trainer

INHALTSVERZEICHNIS

1	Vorv	vort	137
2	Gru	ndlegende Theorie	138
	2.1	Netzqualitätsereignisse	138
	2.2	Schnelle Spannungsänderungen	138
	2.3	Versorgungsspannungseinbrüche	139
	2.4	Versorgungsspannungsanstiege	140
	2.5	Spannungsunterbrechung	140
	2.6	Leistungsmessung	141
	2.7	Energiemessung	142
	2.8 2.8.1 2.8.2	Oberwellen Zwischenharmonische Gesamt-Oberwellen Verzerrung (THD)	143 143
	2.9	Unsymmetrie der Versorgungsspannung	143
	2.10	Flicker	143
	2.11	Inrush	144
	2.12	Transiente Überspannungen	144
3	Verk	bindungseinrichtung	145
	3.1	Elektrische Systemkonfiguration	145
	3.2	Einstellungen Prüfgerät	146
	3.3	Statusleiste des Pürfgeräts	150
	3.4	Inhalt der Speicherliste löschen	151
	3.5	PowerView Installation und Einrichtung	151
4	Übu	ngen	. 153
•	4.1	Übung 1 – Grundlegende allgemeine Handhabung und Aufzeichnung	153
	4.1.1	Echtzeitmessungen	155
	4.1.2	Messungen aufzeichnen	156
	4.1.3	Herunterladen und beobachten aufgezeichneter Daten in PowerView	158
	4.2	Ubung 2 – Spannungseinbruch	160
	4.2.1	Spannungseinbrüche auf dem Prüfgerät beobachten	161
	4.2.3	Herunterladen und beobachten aufgezeichneter Daten in PowerView	163
	4.3	Übung 3 – Spannungsanstieg	168
	4.3.1	Prüfgeräteeinstellung für die Erfassung des Spannungsanstiegs	168
	4.3.2	Spannungsanstiege auf dem Prüfgerät beobachten	170
	4.3.3	Herunterladen und beobachten aufgezeichneter Daten in PowerView	171
	4.4	Übung 4 – Spannungsunterbrechung	176
	4.4.1	Geräteeinstellung für die Erfassung de Spannungsunterbrechung	176
	4.4.2 4 4 २	Spannungsunterprechungen auf dem Prutgerat Deobachten Herunterladen und beobachten aufgezeichneter Daten in PowerView	170
	4.5	Übung - Loistungs5 - und Enorgiomossung	19/
	4.5.1	Energie Aufzeichnung	186
		Echtzoitmossungon Loistung	100

4.5.3	Kapazitive, schaltende und nichtlineare Last	192
4.6 4.6.1 4.6.2	Übung 6 – Oberwellenmessung Echtzeitmessungen Oberwellenmessungen aufzeichnen	194
4.7	Übung 7 – Aufzeichnung Unsymmetrie	197
4.7.1	Echtzeitmessungen	198
4.7.2	Unsymmetriemessungen aufzeichnen	199
4.8	Übung 8 – Flicker	201
4.8.1	Echtzeitmessungen	201
4.8.2	Flickermessungen aufzeichnen	202
4.9	Ubung 9 – Aufzeichnung Inrush	203
4.9 4.9.1	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen	203
4.9 4.9.1 4.9.2	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung	203
4.9 4.9.1 4.9.2 4.9.3	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung Herunterladen und beobachten aufgezeichneter Daten in PowerView	203 204 204 206
4.9 4.9.1 4.9.2 4.9.3 4.10	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 10 – Aufzeichnung Transienten	203 204 204 206 209
4.9 4.9.1 4.9.2 4.9.3 4.10 4.10.	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 10 – Aufzeichnung Transienten 1 Transienten Erfassung	203 204 204 206 209 210
4.9 4.9.1 4.9.2 4.9.3 4.10 4.10. 4.10.	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 10 – Aufzeichnung Transienten 1 Transienten Erfassung 2 Herunterladen und beobachten aufgezeichneter Daten in PowerView	
4.9 4.9.1 4.9.2 4.9.3 4.10 4.10. 4.10. 4.11	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 10 – Aufzeichnung Transienten 1 Transienten Erfassung 2 Herunterladen und beobachten aufgezeichneter Daten in PowerView 2 Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 11 – Phasenfehler (vertauschen)	
4.9 4.9.1 4.9.2 4.9.3 4.10 4.10. 4.10. 4.11 4.12	Ubung 9 – Aufzeichnung Inrush Echtzeitmessungen Inrush Erfassung Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 10 – Aufzeichnung Transienten 1 Transienten Erfassung 2 Herunterladen und beobachten aufgezeichneter Daten in PowerView 2 Herunterladen und beobachten aufgezeichneter Daten in PowerView Übung 11 – Phasenfehler (vertauschen) Übung 12 – Falsche Prüfgeräte Verbindung	203 204 204 206 209 210 211 214 217

ABBILDUNGSSVERZEICHNIS

Abbildung 2-1: Attribute Spannungseinbruch 13	39
Abbildung 2-2: Spannungsanstieg 14	10
Abbildung 2-3: Unterbrechungsschwellen und Definitionen für die Dauer 14	11
Abbildung 2-4: Spannungsschwankung 14	14
Abbildung 2-5: Transienten 14	15
Abbildung 3-1: 3-Phase, 4 - Draht elektrisches System; 14	16
Abbildung 3-2: 3-Phasen, 4 - Draht Verbindung zum Application Trainer 14	16
Abbildung 3-3: Menü Verbindungseinrichtung 14	17
Abbildung 3-4: Einstellung der Nennspannung am Prüfgerät 14	17
Abbildung 3-5: Stromzangen Auswahl 14	17
Abbildung 3-6: Einstellen der Parameter für die Stromzangen am Prüfgerät 14	18
Abbildung 3-7: Auswahl Verbindungskonfiguration auf dem Prüfgerät 14	18
Abbildung 3-8: Bildschirm Verbindungsprüfung 14	19
Abbildung 3-9: Uhrzeit und Datum am Prüfgerät einstellen 14	19
Abbildung 3-10: Statusleiste des Geräts 15	50
Abbildung 3-11: Menü Verbindungseinrichtung 15	52
Abbildung 3-12: Einstellen der USB-Kommunikation in PowerView (PC-Seite) 15	52
Abbildung 3-13: Wellenform mit PowerView beobachten	53
Abbildung 4-1: Untermenü Messungen 15	56
Abbildung 4-2: Echtzeitmessungen von Spannung und Strom	56
Abbildung 4-3: Einstellungen Allgemeiner Rekorder 15	56
Abbildung 4-4: Darstellung Spannungstrends auf dem Prüfgerät 15	57
Abbildung 4-5: Betrachten von Datensätzen über das Untermenü Speicherliste 15	57
Abbildung 4-6: Download Dialog 15	58
Abbildung 4-7: Allgemeine Protokollierungsinformationen 15	59
Abbildung 4-8: Diagramm Ansicht 15	59

Abbildung 4-9: Tabellen Ansicht	160
Abbildung 4-10: Einstellung der Schwelle für den Spannungseinbruch	161
Abbildung 4-11: Bildschirm Wellenform Rekorder	162
Abbildung 4-12: Allgemeinen Rekorder Einstellungen	162
Abbildung 4-13: Ereignistabelle (Spannungseinbrüche)	163
Abbildung 4-14: Spannungseinbruch RMS-Messungen und Wellenform Format	163
Abbildung 4-15: Dialog für das Herunterladen mit dem ausgewählten Datensatz	164
Abbildung 4-16: Datensatz Baumansicht (Finhrüche)	165
Abbildung 4-10. Datensatz Daumansicht (Einbluche)	low
Abbildung 4-17. Spannungseinbruche dargestein in Tabellehansicht in Powerv	166
Abbildung 1 19: Spannungssinhrüchs dergestellt in Zeitschappgrafik in Dewerl	
Abbildung 4-16. Spannungseinbruche dargestellt in Zeitachsengrank in Powerv	
Abbildung 4.40. Aufgenziehnster Changeungeziehnuch (DNAC Marte)	100
Abbildung 4-19: Aufgezeichneter Spannungseinbruch (RMS werte)	167
Abbildung 4-20: Aufgezeichnete Weilenform eines Spannungseinbruchs	167
Abbildung 4-21: Einstellung der Schwelle für die Spannungsüberhöhung	168
Abbildung 4-22: Bildschirm Wellenform Datensatz	169
Abbildung 4-23: Allgemeinen Rekorder Einstellungen	170
Abbildung 4-24: Ereignistabelle (Spannungsanstiege)	170
Abbildung 4-25: Spannungsanstieg RMS-Messungen und Wellenform Format	171
Abbildung 4-26: Dialog für das Herunterladen mit dem ausgewählten Datensatz	172
Abbildung 4-27: Datensatz Baumansicht (Anstiege)	173
Abbildung 4-28: Spannungsanstiege dargestellt in Tabellenansicht in PowerView	174
Abbildung 4-29: Spannungsanstiege dargestellt in Zeitachsengrafik in PowerView	174
Abbildung 4-30: Aufgezeichneter Spannungsanstieg (RMS Werte)	175
Abbildung 4-31: Aufgezeichnete Wellenform eines Spannungsanstiegs	175
Abbildung 4-32 [·] Finstellung der Schwelle für die Spannungsunterbrechung	177
Abbildung 4-33: Bildschirm Wellenform Rekorder	177
Abbildung 4-34: Allgemeinen Rekorder Einstellungen	178
Abbildung 4-35: Freignistabelle (Spannungsunterbrechungen)	178
Abbildung 4-36: Spannungsunterbrechung RMS-Messungen und Wellenform For	mat
Abbildung 4-50. Spannungsunterbrechung Mitto-messungen und weiterhorm i on	170
Abbildung 1-37: Conorierte Protokolle	180
Abbildung 4-37. Generate Protokolle	100
Abbildung 4-30. Datensalz Daumansicht (Onterbrechungen)	101
Abbildung 4-39: Spannungsunterbrechungen dargestellt in Tabellenansicht	
	182
Abbildung 4-40: Spannungsunterbrechungen dargestellt in Zeitachsengrafik	in
PowerView	182
Abbildung 4-41: Aufgezeichnete Spannungsunterbrechung (RMS Werte)	183
Abbildung 4-42: Aufgezeichnete Wellenform einer Spannungsunterbrechung	184
Abbildung 4-43: Einstellungen Allgemeiner Rekorder	187
Abbildung 4-44: Energiezähler und Quadranten Verhältnis	187
Abbildung 4-45: Energiezähler des Geräts	188
Abbildung 4-46: Energiezähler	188
Abbildung 4-47: Aufgezeichnete Leistungsparameter dargestellt im PowerV	ïew
Zeitdiagramm	189
Abbildung 4-48: Untermenü Messungen	189
Abbildung 4-49: Echtzeitmessungen der Leistung	190
Abbildung 4-50: 15° Phasenverschiebung zwischen Spannung und Strom	190
Abbildung 4-51: Echtzeitmessung dargestellt in Tabellenansicht in PowerView	191
Abbildung 4-52: Phasendiagramm und Unsymmetrie dargestellt in PowerView	191

Abbildung 4-54: Kapazitive Last auf Phase L1 192 Abbildung 4-55: Überwachung der Leistung bei schaltender Last 193 Abbildung 4-56: Überwachung der Leistung bei induktiver Last mit 10% der 193 Abbildung 4-58: Eweiterte Darstellung für Leistung und Energie 194 Abbildung 4-58: Untermenü Messungen 195 Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-61: Einstellungen Allgemeiner Rekorder 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 199 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 199 Abbildung 4-67: Einstellungen Allgemeiner Rekorder 200 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-75: Zeitdiagramm Flicker 202 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-75: Zeitdiagramm Flicke
Abbildung 4-55: Schaltende Last auf Phase L2. 192 Abbildung 4-56: Überwachung der Leistung bei induktiver Last 193 Abbildung 4-57: Überwachung der Leistung bei induktiver Last mit 10% der 193 Abbildung 4-58: Erweiterte Darstellung für Leistung und Energie 194 Abbildung 4-59: Untermenü Messungen 195 Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-61: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-64: THD und 3 ^{to} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Echtzeitmessungen Von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-67: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-71: Echtzeitmessungen St
Abbildung 4-56: Überwachung der Leistung bei schaltender Last 193 Abbildung 4-57: Überwachung der Leistung bei induktiver Last mit 10% der 0berwellen am Stromkanal I3 Oberwellen am Stromkanal I3 193 Abbildung 4-58: Erweiterte Darstellung für Leistung und Energie 194 Abbildung 4-59: Untermenü Messungen 195 Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-61: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 199 Abbildung 4-66: Barstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-67: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-73: Darstellung der Flicker 203 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203
Abbildung 4-57: Überwachung der Leistung bei induktiver Last mit 10% der Oberwellen am Stromkanal Is 193 Abbildung 4-58: Erweiterte Darstellung für Leistung und Energie 194 Abbildung 4-59: Untermenü Messungen 195 Abbildung 4-61: Einstellung en Allgemeiner Rekorder 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-64: THD und 3 ^{te} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-68: Darstellung en Allgemeiner Rekorder 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung <t< td=""></t<>
Oberwellen am Stromkanal Is 193 Abbildung 4-58: Erweiterte Darstellung für Leistung und Energie 194 Abbildung 4-59: Untermenü Messungen 195 Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste. 197 Abbildung 4-64: THD und 3 ^{to} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie. 198 Abbildung 4-66: Behtzeitmessungen von Phasendiagramm und Unsymmetrie. 199 Abbildung 4-67: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-67: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush
Abbildung 4-58: Erweiterte Darstellung für Leistung und Energie 194 Abbildung 4-59: Untermenü Messungen 195 Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-61: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-64: THD und 3 ^{1e} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste . 200 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-76: Untermenü Messungen 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Üntermenü Messungen 204 Abbildung 4-79: Echtzeitmessungen Strom Inrus
Abbildung 4-59: Untermenü Messungen 195 Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-61: Einstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste . 197 197 Abbildung 4-64: THD und 3 ¹⁰ Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie. 198 Abbildung 4-67: Einstellungen Allgemeiner Rekorder 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät. 199 Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste . 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie. Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-75: Untermenü Messungen 204 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Untermenü Messungen 204 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abb
Abbildung 4-60: Echtzeitmessungen von Spannung und Strom 195 Abbildung 4-61: Einstellungen Allgemeiner Rekorder 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-64: THD und 3te Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Echtzeitmessungen von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 205 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206
Abbildung 4-61: Einstellungen Allgemeiner Rekorder 196 Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät. 196 Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-64: THD und 3 ^{te} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie. 198 Abbildung 4-66: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät. 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät. 200 Abbildung 4-67: Einstellungen Allgemeiner Rekorder 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie. 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-76: Untermenü Messungen 205 Abbildung 4-77: Echtzeitmessungen Strom Inrush 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 205 Abbildung 4-84: Inrush Datensatz Information
Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät
Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste 197 Abbildung 4-64: THD und 3 ^{te} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 199 Abbildung 4-66: Enstellung des Trends der 3. Oberwelle auf dem Prüfgerät 199 Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 208 Abbildung 4-84: Einstellungen Transienten-Rekorder 210
Abbildung 4-64: THD und 3 ^{te} Oberwellen-Frequenz im Zeitdiagramm 197 Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie 198 Abbildung 4-66: Darstellung en Allgemeiner Rekorder 199 Abbildung 4-66: Betrachten von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 202 Abbildung 4-75: Zeitdiagramm Flicker 202 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Strom Wellenform Aufzeichnung 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Einstellungen Transienten-Rekorder
Abbildung 4-65: Untermenü Messungen 198 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie. 199 Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie. 199 Abbildung 4-67: Einstellungen Allgemeiner Rekorder 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät. 199 Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie. 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Überwachung der Strom Wellenform während der Inrush Erfassung 205 Abbildung 4-78: Überwachung der Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Diagramm Ansicht 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung
Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie. 198 Abbildung 4-67: Einstellung en Allgemeiner Rekorder 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät. 199 Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 210 Abbildung 4-84: Feststellung der Transienten Aufzeichnung am Prüfgerät
Abbildung 4-67: Einstellungen Allgemeiner Rekorder 199 Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät
Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät
Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste 200 Abbildung 4-70: Zeitdiagramm Unsymmetrie. 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 205 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 208 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 211 Abbildung 4-86: Einstellungen Transienten Aufzeichnung am Prüfgerät 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Einstellungen Transien
Abbildung 4-70: Zeitdiagramm Unsymmetrie. 200 Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 206 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Diagramm Ansicht 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 211 Abbildung 4-86: Einstellungen Transienten Rekorder 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Download Dialog 212 Abbild
Abbildung 4-71: Echtzeitmessungen Flicker 201 Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Diagramm Ansicht 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 211 Abbildung 4-86: Einstellungen Transienten Aufzeichnung am Prüfgerät 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Download Dialog 212 Abbildung 4-89: Transienten Presenten Aufzeichnung am Prüfgerät 211 Abbildung 4-89: Transienten Diagramm Ansicht 213 Abbildung 4-90: Phasen Vertauschung 214
Abbildung 4-72: Einstellungen Allgemeiner Rekorder 202 Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 205 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Diagramm Ansicht 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 210 Abbildung 4-86: Einstellungen Transienten-Rekorder 211 Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-89: Transienten Diagramm Ansicht 213 Abbildung 4-89: Transienten Diagramm Ansicht 213 Abbildung 4-90: Phasen Vertauschung
Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät 202 Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 206 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Diagramm Ansicht 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Download Dialog 212 Abbildung 4-86: Einstellungen Transienten-Rekorder 211 Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-89: Transienten Diagramm Ansicht 213 Abbildung 4-89: Transienten Diagramm Ansicht 213
Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste . 203 Abbildung 4-75: Zeitdiagramm Flicker 203 Abbildung 4-76: Untermenü Messungen 204 Abbildung 4-77: Strom Level Auslösung (Inrush) 205 Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung 205 Abbildung 4-79: Echtzeitmessungen Strom Inrush 206 Abbildung 4-80: Download Dialog 206 Abbildung 4-81: Inrush Datensatz Information 207 Abbildung 4-82: Inrush Diagramm Ansicht 208 Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung 209 Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve) 210 Abbildung 4-85: Einstellungen Transienten-Rekorder 211 Abbildung 4-86: Einstellungen Transienten Aufzeichnung am Prüfgerät 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-88: Transienten Diagramm Ansicht 213 Abbildung 4-89: Transienten Diagramm Ansicht 213 Abbildung 4-80: Phasen Vertauschung 214 Abbildung 4-80: Phasen Vertauschung 214
Abbildung 4-75: Zeitdiagramm Flicker203Abbildung 4-76: Untermenü Messungen204Abbildung 4-77: Strom Level Auslösung (Inrush)205Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung205Abbildung 4-79: Echtzeitmessungen Strom Inrush206Abbildung 4-80: Download Dialog206Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder211Abbildung 4-86: Einstellungen Transienten Aufzeichnung am Prüfgerät212Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät212Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-80: Download Dialog214
Abbildung 4-76: Untermenü Messungen204Abbildung 4-77: Strom Level Auslösung (Inrush)205Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung205Abbildung 4-79: Echtzeitmessungen Strom Inrush206Abbildung 4-80: Download Dialog206Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-80: Dierwachung der Transienten Aufzeichnung am Prüfgerät214Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-89: Transienten Diagramm Ansicht214
Abbildung 4-77: Strom Level Auslösung (Inrush)205Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung205Abbildung 4-79: Echtzeitmessungen Strom Inrush206Abbildung 4-80: Download Dialog206Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder211Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät212Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-80: Phasen Vertauschung214Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-78: Überwachung der Ström Wellenform während der Inrush Erfassung205Abbildung 4-79: Echtzeitmessungen Strom Inrush206Abbildung 4-80: Download DialogAbbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder211Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät212Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung215
Abbildung 4-79: Echtzeitmessungen Strom Inrush206Abbildung 4-80: Download Dialog206Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder211Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-79: Echtzeitmessungen Strom Inrush206Abbildung 4-80: Download Dialog206Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-80: Download Dialog206Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-81: Inrush Datensatz Information207Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-82: Inrush Diagramm Ansicht208Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät212Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung209Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)210Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-85: Einstellungen Transienten-Rekorder210Abbildung 4-86: Einstellungen Transienten-Rekorder211Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät211Abbildung 4-88: Download Dialog212Abbildung 4-89: Transienten Diagramm Ansicht213Abbildung 4-90: Phasen Vertauschung214
Abbildung 4-86: Einstellungen Transienten-Rekorder 211 Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät 211 Abbildung 4-88: Download Dialog 212 Abbildung 4-89: Transienten Diagramm Ansicht 213 Abbildung 4-90: Phasen Vertauschung 214 Abbildung 4-01: Febtzeitmessungen von Spannung und Strom 215
Abbildung 4-87: Uberwachung der Transienten Aufzeichnung am Prüfgerät
Abbildung 4-88: Download Dialog
Abbildung 4-89: Transienten Diagramm Ansicht
Abbildung 4-90: Phasen Vertauschung
Abbildung 1 01, Eabtzaitmagan yan Spannung und Stram
Abbildung 4-91. Echizeitmessungen von Spannung und Strom
Abbildung 4-92: Halbzyklus minimale und maximale Spannungswerte
Abbildung 4-93: Wellenform Rekorder Parametereinstellungen
Abbildung 4-94: Phasenschaltereignis am Prüfgerät ansehen
Abbildung 4-95: Phasenschaltereignis in PowerView ansehen
Abbildung 4-96: Falsche Prüfgeräteverbindung
Abbildung 4-96: Falsche Prüfgeräteverbindung

Abbildung	4-99:	Bildschirm	Verbindungsprüfung	(korrekte	Spannung	und
Stromreiher	nfolge)					. 218

TABELLENVERZEICHNIS

Tabelle 31:	Beschreibung der	Statusleiste des Prüfgeräts 1	51
-------------	------------------	-------------------------------	----

1 Vorwort

Um die ersten Schritte in der Welt der elektrischen Signalqualitätsanalyse mit Metrel Produkten zu erleichtern, haben wir Ihnen einige der nachfolgenden Übungen zur Verfügung gestellt, um einige der grundlegenden und am häufigsten genutzten Funktionen unserer Power Master MI 2892 und Power View Software zu entdecken.

Dieses Dokument beschreibt 12 Übungen. Sie sind von der einfachsten, die gängigste Messpraxis beschreibend, bis hin zu den komplexen und praktischen geordnet. Jede Übung führt Sie Schritt für Schritt durch die Einrichtung der Messgeräte, Beobachtung der Daten in Echtzeit, Aufzeichnung und einfache Datenanalyse mit der PowerView-Software. Nach Abschluss der Übungen erhält der Benutzer einen guten Einblick in die Funktionen des Messgerätes und grundlegende Kenntnisse im Umgang mit Problemen der Netzqualität. Weitere Informationen finden Sie in den Bedienanleitungen und Anwendungshinweisen der Messgeräte.

2 Grundlegende Theorie

Für die Messung und Analyse der Netzqualität gibt es heutzutage einige Gründe. Mögliche Wechselwirkungen zwischen Endverbrauchergeräten und Stromverteilungssystem, externe elektromagnetische Interferenzen, Resonanzzustände zwischen elektrischen Schaltungen und einige andere Faktoren erfordern eine Analyse, damit schädliche Folgen vermieden oder verhindert werden können. Die Analyse der Netzqualität umfasst Messungen von:

- Spannungen Phase zu Erde;
- Spannungen Phase zu Neutralleiter;
- Spannungen Neutralleiter zu Erde:
- Spannungen Phase zu Phase in dreiphasigen Systemen;
- Phasenströme.
- Strom in einem Neutralleiter
- Frequenz;
- Leistungsfaktor, cos φ;
- Oberwellenkomponenten von Strom und Spannung und ihre Richtung;
- Wellenform von Strom und Spannung bei bestimmten Umständen (Spitzenwert, Primärfrequenz, Zeit des Auftretens, Anstiegsrate);
- Transienten.

Die Messung der Netzqualität wird normalerweise als eine Messung von niederfrequenten leitungsgebundenen Störungen unter Hinzufügung vorübergehender Phänomene angesehen. Die folgenden Parameter der Versorgungsspannung werden durch Störungen beeinflusst:

- Frequenz
- Spannungspegel
- Wellenform
- Symmetrie des Dreiphasensystems.

2.1 Netzqualitätsereignisse

Die ideale Versorgungsspannung einer einzelnen Phase ist eine reine Sinusspannung mit Nennfrequenz und Spannungsamplitude. Jede davon abweichende Änderung wird als Ereignis einer Netzqualität oder als Störung betrachtet.

2.2 Schnelle Spannungsänderungen

Schnelle Spannungsänderung ist eine schnelle Änderung einer Spannung U_{rms}(1/2) zwischen zwei stationären Zuständen. Dies wird durch das Ein- oder Ausschalten großer Lasten verursacht. Eine typische Ursache für schnelle Spannungsänderungen ist der Start eines großen Motors. Wenn eine schnelle Spannungsänderung den Schwellenschwellenwert für einen Spannungseinbruch / Spannungsanstieg überschreitet, wird dies als Spannungseinbruch oder Spannungsanstieg angesehen.

2.3 Versorgungsspannungseinbrüche

Ein Spannungseinbruch bedeutet eine vorübergehende Verringerung einer Spannung unter einem Schwellenwert. Die Dauer der Erscheinung ist auf 1 Minute begrenzt. Eine verringerte Spannung für einen Zeitraum von mehr als einer Minute wird als eine Größenänderung betrachtet. Eine Spannungsüberhöhung ist gekennzeichnet durch:

- Einbruchschwelle
- Startzeit des Spannungseinbruchs
- Dauer des Spannungseinbruchs
- beibehaltene Spannung (uret)

Die Einbruchschwelle kann vom Prüfer eingestellt werden und stellt einen Teil der Nennspannung U_n oder der angegebenen U_c Spannung dar, und kann für Fehlersuche von 0,9 U_c für vertragliche Zwecke bis 0,65 U_c variieren.

Abbildung 2-1: Attribute Spannungseinbruch

Der Einbruch beginnt, wenn U_{rms(1/2)} unter die Einbruch-Schwelle fällt. Der Einbruch endet, wenn U_{rms(1/2)} über die Einbruch-Schwelle steigt. Die Differenz zwischen Endeund Startzeit ist die Einbruchsdauer und wird in Sekunden oder in Zyklen gemeldet. Die verbleibende (Rest-) Spannung u_{ret} ist der niedrigste Wert für den U_{rms(1/2)}, der während eines Einbruchs aufgezeichnet wird.

Ursprung

Spannungseinbrüche werden durch Fehler im Netzwerk oder durch übermäßig hohe Einschaltströme verursacht.

Auswirkungen auf die Ausrüstung des Kunden

Studien, die in den letzten Jahren durchgeführt wurden, haben bestätigt, dass Spannungseinbrüche die meisten Fehlfunktionen von Geräten verursachen. Relais und Kontraktoren können ausfallen, wenn ein Einbruch 60% länger als eines Zyklus ist. Ein möglicher Schaden hängt davon ab, wie lange die Ausrüstung für kurze Zeit eine niedrigere Spannung aushält. Die Informationstechnologie reagiert besonders empfindlich auf einen Spannungseinbruch.

Ein Asynchronmotor kann einen höheren Strom als seinen Startstrom nach einem Spannungseinbruch ziehen.

2.4 Versorgungsspannungsanstiege

Anstiege sind plötzliche Spannungsanstiege (entgegengesetzt zu Spannungseinbrüchen). für die Klassifizierung von Anstiegen und Einbrüche werden die gleichen Attribute verwendet.

Ursprung

Der Ursprung der Anstiege sind einpoliger Erdschluss (SLG), Upstream-Fehler, Abschalten einer großen Last oder Einschalten eines großen Kondensators.

Auswirkungen auf die Ausrüstung des Kunden

Da Anstiege normalerweise nur kurz andauern, hat dies keine signifikanten Auswirkungen auf die Ausrüstung. Allerdings, Glühbirnen können durchbrennen und Sicherheitsprobleme können auftreten.

Abbildung 2-2: Spannungsanstieg

2.5 Spannungsunterbrechung

Eine Unterbrechung wird als Isolation eines Netzwerks von einer beliebigen Bezugsquelle klassifiziert. Aufgrund der in einem Netzwerk gespeicherten Energie existiert eine spezifische Spannung über Null für eine kurze Zeitspanne nach Beginn der Unterbrechung. Aus diesem Grund wird eine Unterbrechung erkannt, wenn eine U_{rms(1/2)} unter einen Schwellenwert für die Unterbrechung fällt. Der Schwellenwert für die Unterbrechung kann variieren, wird aber normalerweise auf 1%, 5% oder 10% der angegebenen Spannung eingestellt. Die Dauer einer Unterbrechung wird auf die gleiche Weise wie eine Messung der Einbruchdauer nach der Einstellung einer Unterbrechungsschwelle gemessen.

Aufgrund der Messtechnik kann ein Kurzschlussfehler als kurze Unterbrechung in einem Abschnitt des Netzwerks und als Einbruch in einem anderen auftreten. Unterbrechungen werden in zwei Gruppen eingeteilt:

- kurze Unterbrechungen
- lange Unterbrechungen.

Ursprung

Kurze Unterbrechungen werden durch einen Fehler in der Einspeisung hervorgerufen. Die Dauer einer kurzen Unterbrechung ist auf 1 Minute oder 3 Minuten begrenzt. Lange Unterbrechungen sind Unterbrechungen, die die Grenze der kurzen Unterbrechungsdauer überschreiten. Sie treten auf, wenn ein Fehlerzustand nicht mit einer Steuersequenz beendet werden kann und die endgültige Auslösung eines Leistungsschalters auftritt.

Abbildung 2-3: Unterbrechungsschwellen und Definitionen für die Dauer

Auswirkungen auf die Ausrüstung des Kunden

industriellen Umgebung Unterbrechungen In einer können zu Produktionsunterbrechungen führen, indem die Anzahl von Ausschuss oder Materialverschwendung erhöht wird. In einigen Bereichen können Unterbrechungen Geräteschäden oder sogar Verletzungen das Risiko von erhöhen. Die Informationstechnologie ist auf zwei Arten betroffen. Erstens, es können aktuelle Daten verloren gehen und das System kann beschädigt werden. Zweitens, nachdem die Unterbrechung vorüber ist, kann der Neustart, insbesondere auf einem großen und komplexen System, mehrere Stunden dauern. Aus diesen Gründen werden kritische Computersysteme und Telekommunikationsgeräte mit UPS Strom ergänzt.

2.6 Leistungsmessung

Wirkleistung (P)

Wirkleistung ist die erzeugte Leistung, wenn eine Spannung über eine rein ohmsche Last gelegt wird und Strom fließen darf. Die Wirkleistung wird üblicherweise in Watt (W) oder Kilowatt (kW) gemessen.

Blindleistung (Q)

Blindleistung ist die Leistung, die von reaktiven Komponenten (z. B. Induktivitäten, Kondensatoren) generiert wird, um ein Magnetfeld zu erzeugen. Dies wird normalerweise in Volt-Amper reaktiv (Var) gemessen.

Scheinleistung (S)

Scheinleistung ist die wahrgenommene Leistung einer Last, die sowohl ohmsche als auch reaktive Komponenten aufweist. Scheinleistung ist die Vektorsumme von sowohl aktiver als auch reaktiver Leistung und wird normalerweise in Volt-Ampere (VA) gemessen.

Leistungsfaktor

Der Leistungsfaktor ist ein Maß für die Effizienz eines Leistungssystems und ist das Verhältnis von Wirkleistung zu Scheinleistung.

2.7 Energiemessung

Energie ist die Erzeugung oder Nutzung von elektrischer Energie über einen bestimmten Zeitraum. Dies wird normalerweise in Kilowattstunden (kWh) ausgedrückt.

2.8 Oberwellen

Jede periodische Abweichung einer reinen sinusförmigen Spannungswellenform kann mit der Summe von Sinuskurven der Netzfrequenz und ihren ganzzahligen Vielfachen dargestellt werden. Die Netzfrequenz wird als Grundfrequenz bezeichnet. Eine Sinuswelle mit einer Frequenz k-mal höher als die Grundwelle (k ist eine ganze Zahl) wird als Oberwelle bezeichnet und wird mit Amplitude und einer Phasenverschiebung (Phasenwinkel) zu einem Grundfrequenzsignal bezeichnet. Das Verhältnis zwischen der Oberwellenfrequenz und einer Grundfrequenz (k) wird als Ordnungszahl bezeichnet.

Ursprung

Nichtlineare Lasten (Gleichrichter, Frequenzumrichter, Leuchtstofflampen, PC, TV ...) ziehen Strom mit einem hohen THDI (stark nicht-sinusförmige Wellenform). Zu Analysezwecken können nichtlineare Lasten mit linearen Lasten und der (aktuellen) Oberwellenquelle modelliert werden. Stromoberwellen verursachen einen nicht sinusförmigen Spannungsabfall an der Referenzimpedanz und eine verzerrte Spannung an den Stromversorgungsanschlüssen. Nichtlineare Lasten stören die Versorgungsspannung so, dass mit einem Messgerät nur **ungeradzahlige Oberwellen** erfasst werden können.

Wenn die Last unsymmetrisch gesteuert wird, unterscheiden sich die positive und die negative Halbperiode des Stroms in Form und Effektivwert, wodurch **geradzahlige Oberwellen** und eine Gleichstromkomponente entstehen. Diese Situation verursacht eine Sättigung und Überhitzung der Transformatorkerne. Eine erhebliche DC-Komponente kann in einigen Bereichen durch geomagnetische Stürme verursacht werden.

Eine weitere Quelle für Oberwellen ist das Versorgungsnetz selbst. Die Magnetisierung des Leistungstransformatorkerns und dessen Sättigung verursachen nicht-sinusförmige Ströme, die sich an den Versorgungsanschlüssen als THDU offenbaren.

Ursachen von Oberwellenstörungen

- einphasige Gleichrichter hohe 3^{te} Oberwelle, THDI 80%
- dreiphasige Lasten 5^{te}, 7^{te}, 11^{te}, 13^{te}, 17^{te} Oberwelle
- unsymmetrisch geregelte Versorgung gerade Oberwellen und DC
- höhere Puls Anzahl niedriger THDI
- serielle Induktivität verringert THDI

• LV-Stromversorgungsnetz - THDU 1,5 ÷ 4,5%, hauptsächlich 5^{te} Oberwelle

Auswirkungen auf die Ausrüstung des Kunden

- Gesamtenergieeffizienz ist verringert
- vorzeitige Alterung von Systemkomponenten
- Dreifach Oberwellen können hohe Ströme im Neutralleiter erzeugen, was zur Überhitzung und Verlusten führt
- erhöhte Erwärmung, Lärm und Vibrationen in Transformatoren und Motoren
- der Strom in die Kondensatorbank steigt mit der Ordnung der Oberwellen an, was zu Fehlern führt
- Vorhandensein der Oberwellen steigert die Möglichkeit einer Resonanz
- Probleme mit Signalfrequenzen
- Auslösung von Schutzeinrichtungen
- Ausfallrate elektronischer Antriebe und Schalter steigt, wenn THDU über 8% steigt

2.8.1 Zwischenharmonische

Zwischenharmonische sind Oberwellen, die keine ganzzahlige Multiplikation der Grundfrequenz sind. Die Hauptursachen für zwischenharmonische Signalverzerrung sind statische Frequenzumrichter, Induktionsmotoren und Lichtbogengeräte.

2.8.2 Gesamt-Oberwellen Verzerrung (THD)

THD ist das Verhältnis des Oberwellengehaltes einer Welle (für Spannung oder Strom) zu ihrer Grundkomponente.

2.9 Unsymmetrie der Versorgungsspannung

Die Unsymmetrie der Versorgungsspannung entsteht, wenn Effektivwerte oder Phasenwinkel zwischen aufeinander folgenden Phasen nicht gleich sind. Der Begriff Imbalance wird auch als Alternative verwendet. Die Unsymmetrie der Versorgungsspannung ist definiert Verhältnis der als das negativen Sequenzkomponente zur positiven Sequenz.

$$u_{u} = \frac{|V_{i}|}{|V_{d}|} \cdot 100 \% = \frac{negative \ sequence}{postive \ sequence} \cdot 100 \%$$

Ursprung

Unsymmetrie tritt auf, wenn der Stromverbrauch nicht ausgeglichen ist oder während eines fehlerhaften Zustands vor dem Auslösen.

Auswirkungen auf die Ausrüstung des Kunden

Spannungsunsymmetrie kann bei Drehstromasynchronmotoren zu Überhitzung und zum Auslösen von Schutzeinrichtungen führen.

2.10 Flicker

Flicker ist das visuelle Empfinden, welches durch das Flackern oder Flimmern eines Lichtes hervorgerufen wird. Der Empfindungsgrad hängt von der Frequenz und dem Ausmaß der Lichtänderung und vom Beobachter ab.

Wie in der Abbildung unten dargestellt, kann die Änderung eines Lichtflusses mit einer Spannungshüllkurve in Beziehung gebracht werden.

Abbildung 2-4: Spannungsschwankung

Ursprung

Ursprünge von Spannungsschwankungen sind Lichtbogenöfen, Schweißmaschinen und ähnliche schwere Lasten, die stark variierende Ströme verbrauchen. Flicker kann beim Vorhandensein von Zwischenharmonischen mit einer Frequenz nahe der Grundfrequenz oder Oberwellen auftreten.

Auswirkungen auf die Ausrüstung des Kunden

Die Größenordnung der Spannungsschwankungen liegt normalerweise unter 3% der Versorgungsspannung und hat keinen merklichen Einfluss auf die Ausrüstung. Flicker durch Spannungsschwankungen von nur 0,2% bei einer Frequenz von 9 Hz wird als störend empfunden.

2.11 Inrush

Der Strom, der zum Starten eines Motors benötigt wird, kann 10- bis 15-mal so groß sein wie der normale Betriebsstrom. Dieser anfängliche Stromstoß kann zu Spannungseinbrüchen führen und kann mit normalen Testinstrumenten nur schwer analysiert werden. Aus diesem Grund ist ein Analysator mit einer schnellen Protokollierungsfunktion erforderlich.

2.12 Transiente Überspannungen

Transiente ist ein Begriff für eine **kurze, stark gedämpfte**, momentane Spannungsoder Stromstörung.

Es gibt zwei Arten von transienten Überspannungen:

- impulsive Überspannung
- oszillierende Überspannung

Ursprung

Impulsförmige transiente Überspannungen sind *unidirektionale* Störungen, die durch Beleuchtung verursacht werden und eine hohe Stärke, aber geringe Energie
haben. Der Frequenzbereich liegt über 5 kHz mit einer Dauer von 30-200 Mikrosekunden.

Oszillierende transiente Überspannungen entstehen durch Schalten, Ferro-Resonanz oder können als Systemantwort auf eine impulsförmige Überspannung auftreten. Schaltüberspannungen haben hohe Energie und werden als niedrig (<5 kHz), mittel (5 kHz <f <500 kHz) und hochfrequent (> 500 kHz) klassifiziert.

Auswirkungen auf die Ausrüstung des Kunden

Transiente Überspannungen verursachen den sofortigen Ausfall oder die Zerstörung eines Transformators, Kondensators oder Halbleiters oder schädigt die Kabelisolierung, das zu einem fehlerhaften Betrieb führen kann. Elektronische Laufwerke können ausfallen.

Abbildung 2-5: Transienten

3 Verbindungseinrichtung

3.1 Elektrische Systemkonfiguration

Bevor wir mit den Messungen beginnen, sollten das Prüfgerät und die Software richtig eingerichtet werden.

Zu Demonstrations- und Übungszwecken simulieren wir eine typische Situation, bei der ein Prüfgerät an das 3-Phasen, 4 - Draht System angeschlossen wird, irgendwo zwischen dem Transformator und der Last.

 $U_{Nom} = 230 VL-N$

 $I_{Nom} = 1000 A$

 $f_{Nom} = 50/60 \ Hz$

Abbildung 3-1: 3-Phase, 4 - Draht elektrisches System;

Um diese Verbindung zu "simulieren", sollten im Application Trainer Prüfgerät und Stromzangen wie in der folgenden Abbildung gezeigt mit dem Application Trainer verbunden werden.

Abbildung 3-2: 3-Phasen, 4 - Draht Verbindung zum Application Trainer

3.2 Einstellungen Prüfgerät

Um die Leistungsparameter korrekt zu messen, ist es wichtig, das Prüfgerät richtig einzurichten.

Wie dies gemacht wird, wird in den nächsten Abbildungen beschrieben. Zuerst wechseln Sie zum Menü MESSEINSCHTELLUNGEN und wählen das Untermenü VERBINDUNGSEINSTELLUNG. Das Menü VERBINDUNGEN ist in der Abbildung unten dargestellt.

ENTER

CONNECTION SETUP	(12:06	
Nominal voltage L-N	230V	ۍ
Phase Curr. Clamps	A1033 (1000A/V)	4J
Neutral Curr. Clamps	A1033 (1000A/V)	ŝ
Connection	4W	4J
Synchronization	U1	
System frequency	50Hz	
Connection check	1	ŝ
Factory reset		4

Abbildung 3-3: Menü Verbindungseinrichtung

- 1. Wählen Sie die Nennspannung L-N und drücken Sie die Enter Taste
- 2. Stellen Sie Nennspannung und Spannungsverhältnis, wie in der folgenden Abbildung dargestellt ist, ein.

SETUP			11:48
U1	U2	(<u>U3</u>)	Un
230.46V	230.58V	230.58V	230.09V
Nominal voltage	L-N 230V		
Voltage ratio	1:1		

Abbildung 3-4: Einstellung der Nennspannung am Prüfgerät

- 3. Verlassen Sie die Einstellung der Nennspannung durch einmaliges Drücken der Esc Taste.
- 4. Wählen Sie das Menü Phasen Stromzangen und drücken Sie die Taste.
- 5. Wählen Sie die A1033 Stromzange und drücken Sie die Enter Taste

Select Cla	nps	CIII 11:	:55
Smart clan	ips / T		
Custom			
None			
A1033	(1000A, [.]	100A)	
A1069	(100A, 10	DA)	
A1122	(5A, 500)	mA)	
A1037	(5A, 500)	mA)	
A1120	(30A, 30	DA, 3000A)	

Abbildung 3-5: Stromzangen Auswahl

6. Wählen Sie 100% Messbereich und drücken Sie die ESC Taste.

SETUP			(13:4
1	12	13	In
1359A	1359A	1009A	1009A
Clamps selected	A1033		
Status	N/A		
Clamps range	1000A		
Measuring range	100% (1	000A/V)	
Measuring on wires	i 1/1		

Abbildung 3-6: Einstellen der Parameter für die Stromzangen am Prüfgerät

- 7. Wählen Sie die Neutralleiter Stromzangen und wiederholen Sie den Vorgang oben (Schritte 5 und 6).
- 8. Wählen Sie das Menü Verbindungen und drücken die
- 9. Wählen Sie die 3-Phasen / 4-Leiter-Verbindung (4 W) und drücken Sie die F3 Taste. Nachdem der entsprechende Modus ausgewählt wurde, drücken Sie die **Esc** Taste.

Abbildung 3-7: Auswahl Verbindungskonfiguration auf dem Prüfgerät

- 10. Wählen Sie den Synchronisierungskanal aus: U1
- 11. Wählen Sie die Systemfrequenz aus: 50/60 Hz
- 12. Prüfen Sie den Status der Verbindungsprüfung. Wenn der Status mit OK-Zeichen (/) markiert ist, dann haben Sie das Gerät richtig eingestellt. Falls die

ENTER Statusanzeige "Fehler" (X) anzeigt, drücken Sie und die Details werden angezeigt. Überprüfen Sie jeden Parameter, der außerhalb des Grenzwerts liegt, und versuchen Sie das Verbindungsproblem zu beheben.

Taste.

Connect	tion: Consum	ed	۲ <u>ا</u>	14:1
	L1	L2	L3	
U	× 110.46	<mark>×</mark> 110.58	<mark>×</mark> 110.58	v
I	<mark>×</mark> 1359	<mark>×</mark> 1359	<mark>×</mark> 1359	Α
Ρ	83.76	84.20	84.94	kW
Phase	√ 349.8	/ 350.5	🧹 0.4	•
Useq	X 3 2 1	Ptot	252.9	ĸ₩
lsea	X321	f	✓ 50.000	Hz

Abbildung 3-8: Bildschirm Verbindungsprüfung

13. Drücken Sie F1 und prüfen Sie, ob Datum und Uhrzeit richtig eingestellt sind.

Abbildung 3-9: Uhrzeit und Datum am Prüfgerät einstellen

In der Praxis ist es beim Anschluss des Prüfgeräts an das elektrische System wichtig, dass sowohl die Strom- als auch die Spannungsverbindung korrekt sind. Folgende Regeln sind besonders zu beachten:

Stromzangen / Stromzangenwandler

• Der Pfeil auf dem Stromzangenwandler muss in die Richtung des Stromflusses zeigen: von der Versorgungsquelle zur Last.

• Wenn der Stromzangenwandler umgekehrt angeschlossen ist, wird die gemessene Leistung dieser Phase normalerweise negativ angezeigt. Phasenverhältnisse

• Der an den Stromeingang I₁ angeschlossene Stromzangenwandler misst den Strom im Phasenleiter, der mit der Spannungsprüfspitze von L₁ verbunden ist.

3.3 Statusleiste des Prüfgeräts

Die Statusleiste des Geräts ist auf dem Bildschirm oben platziert. Sie zeigt verschiedene Gerätezustände an. Beschreibungen der Icons sind in der Tabelle unten ersichtlich.

Abbildung 3-10: Statusleiste des Geräts

	Zeigt den Ladezustand der Batterie an.
Û	Zeigt an, dass das Ladegerät an das Gerät angeschlossen ist. Die Akkus werden automatisch geladen, wenn das Ladegerät vorhanden ist.
₽	Das Prüfgerät ist gesperrt.
$\mathbf{\hat{v}}$	AD-Wandler außerhalb des Bereichs. Die gewählte Nennspannung oder der Bereich der Stromzange ist zu klein.
09:19	Aktuelle Uhrzeit

Status GPS-Modul

\$?	GPS-Modul erkannt, dies meldet aber ungültige Zeit- und Positionsdaten.
	(Satellitensuche läuft oder zu schwaches Satellitensignal).
s)	GPS-Zeit gültig – gültiges GPS-Zeitsignal vom Satelliten

Status Internetverbindung

	Internetverbindung nicht verfügbar
品	Gerät ist mit dem Internet verbunden und kommunikationsbereit.
- 88	Gerät ist mit PowerView verbunden.

Status Rekorder

G	Allgemeiner Rekorder ist aktiv, wartet auf Auslöser.
G	Allgemeiner Rekorder ist aktiv, Aufzeichnung läuft.
W	Wellenform Rekorder ist aktiv, wartet auf Auslöser.

W	Wellenform Rekorder ist aktiv, Aufzeichnung läuft.
T	Transienten Rekorder ist aktiv, wartet auf Auslöser.
1	Transienten Rekorder ist aktiv, Aufzeichnung läuft.
R	Speicherliste abrufen. Der angezeigte Bildschirm wurde vom Gerätespeicher abgerufen.

Tabelle 3.-1: Beschreibung der Statusleiste des Prüfgeräts

3.4 Inhalt der Speicherliste löschen

Um den Inhalt der Speicherliste zu löschen (zum Beispiel vor dem Start auf eine neue Position der Aufnahme), folgen Sie den Anweisungen:

- 1. Wechsle zum Menü RECORDS
- 2. Wählen Sie das Untermenü SPEICHERLISTE..
- 3. Um jeweils nur eine Datei zu löschen, wählen Sie die Funktion CLEAR, indem Sie die Taste F3 am Prüfgerät drücken.
- 4. Um alle Dateien gleichzeitig zu löschen, wählen Sie die Funktion CLR ALL, indem Sie die Taste F4 am Gerät drücken.

3.5 **PowerView Installation und Einrichtung**

Metrel PowerView ist ein leistungsstarkes Werkzeug zum Herunterladen, Analysen der aufgezeichneten Daten und für die Erstellung der Netzqualitätsprüfberichte für das Metrel MI 2892 Power Master Prüfgerät. Durch eine einfache, aber leistungsstarke Schnittstelle hilft Ihnen PowerView, PQ-Probleme schnell zu finden, während Sie komplexe Analysen und Datenvergleiche einfach durchführen können. PowerView kann im <u>Download Center</u> von Metrel kostenlos heruntergeladen werden. Je nach Ihrer Version von Microsoft Windows können Sie eine 32-Bit- oder eine 64-Bit-Version herunterladen. Bitte verwenden Sie das folgende Verfahren, um PowerView zum ersten Mal einzurichten:

- 1. <u>Download</u> PowerView Vers.3 und starten Sie die Installation. Folgen Sie dem Assistenten durch die Installation.
- 2. Schalten Sie das Prüfgerät nach Abschluss der Installation ein und verbinden Sie es mit einem USB-Kabel mit dem PC.
- 3. Windows wird alle notwendigen Treiber automatisch installieren. Beachten Sie, dass der Windows-Benutzer Administratorrechte benötigt, um diese Aufgabe abzuschließen.
- 4. Wählen Sie im Instrument das Menü ALLGEMEINE EINSTELLUNGEN und anschließend das Untermenü KOMMUNIKATION.
- 5. Wählen Sie die USB Verbindung wie in der Abbildung unten dargestellt.

Abbildung 3-11: Menü Verbindungseinrichtung

6. Öffnen Sie die Metrel PowerView-Software auf Ihrem PC und wählen Sie Werkzeuge → Optionen aus der Menüleiste. Ein neues Fenster wird angezeigt. Stellen Sie den Verbindungstyp auf USB, geben Sie den Anschlussnamen ein (z. B. MI 2892 USB Vcom Port (COM4⁹)). Bestätigen Sie die Einstellungen Die Kommunikation wurde erfolgreich eingerichtet.

Netrel Power	Tiew v3
File View	ools Help
) 🔍 🔍 🔊 안 😓 Download 🔌 Import from directory 📴 Remote 🔤 Real-time Scope 🏐 🗄 🔮 🗰 🔳 🚳 🗵 🖗 🗉 🖷 🗮 🗮
Welcome	
	Metrel PowerView Quick Start titings f X f X f X f X f X f X f X f
	USB port parameters If of Name MI2892 USB VCom Pot (COM4) Image: Comparison of the
Sample I C:\Program	Baud Rate 921600 port for SMart multi-range current damps A 1281 cular recording bug fix rt update procedure by using PowerView menu: rt update procedure by using PowerView menu: rt update procedure by using PowerView menu:
C: Users M My Docume	Apply Ok Cancel follow the instructions,
C: \ProgramDa Metrel Pow ©2008-2013 M	Wetrel/PowerView(Samples(SampleRecords.pwv rView v3.0.0.1499 (64-bit), si-SI trel d.d. Slovenia
Ready.	

Abbildung 3-12: Einstellen der USB-Kommunikation in PowerView (PC-Seite)

7. Für eine schnelle Überprüfung ist es ratsam, auf das Echtzeit-Symbol zu klicken, um zu sehen, ob Messungen momentan vom Instrument heruntergeladen und auf dem Bildschirm angezeigt werden.

⁹ Beachten Sie, dass die tatsächliche COM-Portnummer abweichen kann.

Abbildung 3-13: Wellenform mit PowerView beobachten

8. Klicken Sie erneut auf das Echtzeit-Symbol, um den fortlaufenden Download zu stoppen.

4 Übungen

4.1 Übung 1 – Grundlegende allgemeine Handhabung und Aufzeichnung:

In dieser Übung werden grundlegende Schritte für die Netzqualitätsanalyse gezeigt:

- Netzqualitätsmessungen in Echtzeit beobachten
- Aufnahme und Beobachtung der aufgezeichneten Daten auf dem Prüfgerät
- Herunterladen und Beobachten heruntergeladener Daten in PowerView

Stellen Sie vor dem Start die Schalter S1 ÷ S11 des Application Trainers auf AUS, wie in der Tabelle unten gezeigt.

Achtung! Bitte beachten Sie, dass bei der Simulation von Netzqualitätsfehlern immer nur ein (1) Fehlerschalter eingeschaltet werden kann. Wenn mehr als ein (1) Fehlerschalter eingeschaltet ist, ertönt ein Alarmsummer.

Schalter	Beschreibung	Zustand
S1	Spannungseinbruch	
		AUS
S2	Spannungsüberhöhung	
		AUS
S3	Unterbrechung	
		AUS
S4	Kapazitive Last und Energie	
		AUS
S5	Harmonische	
S6	Unsymmetrie	7.00
S7	Flicker	AUS
		AUS

S8	Inrush	
		AUS
S9	Transienten	
		AUS
S10	Phasenfehler (Schalter)	
		AUS
S11	Falsche Geräteverbindung	
		AUS

Der Application Trainer "simuliert" ein elektrisches System mit folgenden Parametern:

- Grundspannung: 230 V
- Grundstrom: 1000 A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt beschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, können Sie beginnen die Messungen zu beobachten.

4.1.1 Echtzeitmessungen

Durch öffnen des Menüs MESSUNGEN kann der Benutzer die gemessenen Parameter in Echtzeit beobachten.

Abbildung 4-1: Untermenü Messungen

Abbildung 4-2: Echtzeitmessungen von Spannung und Strom

4.1.2 Messungen aufzeichnen

Grundlegendes Werkzeug für eine Übersicht über die Netzqualität ist die Aufzeichnung von Parametern eines elektrischen Systems. In diesem Schritt erstellen wir eine Aufzeichnung und beobachten sie auf dem Prüfgerät, da dies typisch ist, wenn wir ein Problem vor Ort lösen.

Gehen Sie vom Hauptmenü aus zum Fenster RECORDER und wechseln Sie dann zu ALLGEMEIN REK. Hier muss der Prüfer alle Parameter einstellen, wie in der Abbildung unten gezeigt. Der Prüfer sollte nur grundlegende Aufzeichnungsparameter einstellen, um den Sinn für die Daten zu erhalten.

GENERAL REC.	00:23		
INTERVAL	10 s		
INCLUDE EVENTS	Off		
INCLUDE ALARMS	Off		
INCLUDE SIGNALLING	Off		
START TIME	Manual		
DURATION	1 days (316MB)		
Recommended record du Available memory: 10d, 0	ration: 1 days (316MB) 92h (3191MB)		
START	CONFIG CHECK C.		

Abbildung 4-3: Einstellungen Allgemeiner Rekorder

Das Prüfgerät ist nun vorbereitet für die Aufzeichnung der Parameter des elektrischen Systems, die vom Application Trainer generiert werden. Bitte starten Sie

den Rekorder durch Drücken der Taste F1 ("START"). Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken.

Nachdem der Allgemeine Rekorder eingestellt wurde, können Sie den Rekorder starten - indem Sie F1 (START) drücken Auch wenn wir als Ende der Messung 1 Tag eingestellt haben, kann der Rekorder jederzeit durch Drücken der F1 (STOP) Taste gestoppt werden.

Während die Aufnahme aktiv G ist, kann der Prüfer alle aufgezeichneten Parameter auf dem TREND Bildschirm auswerten, der im Untermenü MESSUNGEN erscheint. Die folgende Abbildung zeig Spannungstrends (MESSUNG \rightarrow U, I, f \rightarrow TREND (2x Taste F4 drücken). Ähnliche Trends können für Leistungsparameter im Menü LEISTUNG, Oberwellen im Menü Oberwellen usw. erlangt werden.

U,I,f:TREND 👗	G (00:36
01.Jan.2000 01.00/div	
230.0v	
229.9v	
(<u>Un</u> ¥) 230.0v	
02m 45s	
U I f	[1 2 3 N 👗] [METER]

Abbildung 4-4: Darstellung Spannungstrends auf dem Prüfgerät

Beenden Sie die Aufnahme nach einigen Minuten, indem Sie das Menü REKORDER \rightarrow ALLGEMEINER REKORDER aufrufen und die Taste F1 (STOP) drücken. Der gespeicherte Datensatz kann am Prüfgerät angesehen oder an PowerView übertragen werden. Wenn wir einen Datensatz auf dem Prüfgerät analysieren möchten (während wir im Feld sind), rufen Sie das Menü RECORDER \rightarrow SPEICHERLISTE auf. Eine Liste der verfügbaren Datensätze wird angezeigt. Wählen Sie den Datensatz, den Sie ansehen möchten, drücken Sie die Taste "ANSICHT" und wählen Sie dann die elektrischen Systemparameter.

MEMORY LIST	00:47	VIEW	R (00:48
Record No. 1	1/11	U,I,f	
FILE NAME	R0009GEN	POWER	
ТҮРЕ	GENERAL REC.	FLICKERS	
INTERVAL	3 s	UNBAL.	
START	01.Jan.2000 11:20	HARMONICS	
SIZE	85.7MB	SIGNALLING	
VIEW			

Abbildung 4-5: Betrachten von Datensätzen über das Untermenü Speicherliste

4.1.3 Herunterladen und beobachten aufgezeichneter Daten in PowerView

Aufgezeichnete Daten können zur weiteren Analyse in PowerView importiert werden Bitte beachten Sie, dass PowerView vor diesem Schritt, wie im Abschnitt 3.5 PowerView Installation und Einrichtung beschrieben, installiert und eingerichtet werden muss.

Öffnen Sie PowerView und klicken Sie auf die Schaltfläche "Herunterladen" in der Symbolleiste. Ein neues Fenster wird angezeigt. Die Informationen zu Ihrem Prüfgerät sollten oben im Fenster verfügbar sein und eine Liste der verfügbaren Datensätze, finden Sie direkt darunter (siehe Abbildung 4-6: Download Dialog). Wählen Sie die gewünschten Datensätze aus (die aktuelle Auswahl ist grün markiert) und klicken Sie dann auf die Schaltfläche "Import starten".

🛃 Import				
Using t	vnload Dialog his dialog, you can select individual records	for download and define where you want to place the	m.	
	Instrument Metrel MI 2892 v Model: MI 2892 Hardware version: 5.0 Firmware version: 1.0.1852 Description: N/A	/ 1.0.1852 is connected Company: Metrel d.d. Serial No.: 14470335 Other information: N/A		
	0. General Logging, recorded File name: R0002GEN.REC Start time: 1.1.2000 5:50:00,000 Stop time: 1.1.2000 6:49:59,837 File size: 0,20 MB	on 1.1.2000 5:50:00, duration: 59 m 59	s 837 ms. Download to: Create a new site>	T
	-Show records			
☑ Select/Desele	t all General General Waweform	1	Start importing	Cancel

Abbildung 4-6: Download Dialog

Nach dem Import erscheint eine Registerkarte "Datensatz Information" auf dem Bildschirm. Diese Registerkarte enthält grundlegende Informationen zum Datensatz. Auf die aufgezeichneten Daten kann jetzt über die Registerkarte "Daten-Explorer" zugegriffen werden.

Metrel PowerView v3	٦×
: Ele Edt View Action Iools Heb	
🗄 🗋 📴 🙀 🥝 🐧 🔍 🖓 🕫 🖉 📓 🐘 🗙 🖓 👘 🖓 👘 👘 🎝 Download 🔺 Import from directory 📴 Remote 🔤 Real-time Scope 🚳 🗄 🌞 📀 🧭 🔤 🖓 📓 📾 👯 👹 👘 👘 👘 👘 👘 👘	÷
/ New Document *	• ×
Data Explorer 🕴 🗙 🖉 General Logging (R0002GEH) [1.1	
group By: Quantity Record Information	Pop
Image: Stop time: 1.1:2000 6:49:59,837 Image: Stop time: 1.1:2000 6:49:59,837 <t< th=""><th>oerties</th></t<>	oerties
Generating and the second	
Airm capture: Airms disabled Events capture: Events disabled	
Instrument Properties Hardware version: 5 Firmware version: 10.1852 S/n: Calibration date: 4.1.2079 11:04:48	
Miscellaneous Information Downloaded on: 10.2.0315 13:93:32,749 Downloaded using: Metrel PowerView v3.0.0.1499 (64-bit), sl-SI Windows version:	
Ready.	:

Abbildung 4-7: Allgemeine Protokollierungsinformationen

Doppelklick (oder Klick auf ⊞ Zeichen) auf der "U / I / f" Option, dann Doppelklick auf "Strom". Als nächstes kreuzen Sie die Option "I1" an. Neue Registerkarten "Trenddiagramm" (nur wenn die allgemeine Aufzeichnungsoption verwendet wird) und "Tabelle" erscheinen auf der rechten Seite. "Trenddiagramm" (siehe Abbildung 4-8: Diagramm Ansicht) stellt das Signal im Zeitbereich grafisch dar, während "Tabelle" (siehe Abbildung 4-9: Tabellen Ansicht) die Daten in numerischer Form darstellt.

Abbildung 4-8: Diagramm Ansicht

Netrel PowerView v3										×
Eile Edit View Action Tools Help										
🗄 🗋 🚰 🛃 🖪 💁 🔍 🖉 🖓 🤍 🗎 🖸 Copy s	selected cells 🔢 Copy <u>e</u> nti	re table 🛛 😭	👶 Downlo	ad 🤼 Import f	from directory	🛃 Remote	Neal-time Scope	۵ 🗎 🖗		Ŧ
New Document *									•	x
Data Explorer 🛛 🕂 🗙	🛛 🔤 General Logging	(R0002GEN)	[1.1					•	• X	
Group By: Quantity	Record Information Trend	Chart Table								Prop
Den Contraction Site			1	Current						bertie
General Logging (R0002GE				11						<u> </u>
		± Min [A]	Avg (A)	🚠 AvgOn [A]	T Max [A]					
	1.1.2000 6:00:00,037	1000,961	1001,045	1001,045	1001,135					
	1.1.2000 6:10:00,037	1000,967	1001,050	1001,050	1001,144					
	1.1.2000 6:20:00,037	1000,970	1001,052	1001,052	1001,147					
	1.1.2000 6:30:00,037	1000,961	1001,049	1001,049	1001,140					
E Frequency	1.1.2000 6:40:00,037	1000,960	1001,046	1001,046	1001,141					
Voltage Deviation	1.1.2000 6:50:00,037	1000,957	1001,046	1001,046	1001,143					
Woltage Crest Factor										
Power & Energy										
🕀 🕞 Flicker										
Harmonics & THD										
🕀 🗐 Signaling										
🛨 🐨 🔐 Temperature										
Ready.										.:

Abbildung 4-9: Tabellen Ansicht

Abhängig von dem Parameter, den wir in der Ansicht "Tabelle" ansehen (in unserem Fall Strom), werden nur wenige Optionen angezeigt:

- Min zeigt den minimalen 10/12 Zyklus RMS Wert in einem bestimmten Zeitintervall an,
- Avg zeigt den durchschnittlichen 10/12 Zyklus RMS Wert in einem bestimmten Zeitintervall an,
- AvgOn gibt nur den nicht null 10/12 Zyklus RMS-Mittelwert in einem bestimmten Zeitintervall an (gleich wie Avg, berücksichtigt jedoch keine Null-Messwerte). Diese Messung ist nützlich, um den Schalter Typ der Last zu beurteilen
- Max zeigt den maximalen 10/12 Zyklus RMS Wert in einem bestimmten Zeitintervall an.

Auf weitere Daten (Leistung, Oberwellen usw.) kann in ähnlicher Weise zugegriffen und können analysiert werden.

4.2 Übung 2 – Spannungseinbruch

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um einen Spannungseinbruch zu erfassen und zu beobachten. Spannungseinbruch ist eine vorübergehende Verringerung der Spannungshöhe in einem Punkt im elektrischen System unterhalb der gegebenen Grenzwerte. Stellen Sie vor dem Start den Schalter S1 im Application Trainer auf EIN, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S1	Spannungseinbruch	

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung: 230 V
- Grundstrom: 1000 A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz
- 138 V tief, 5 Perioden langer Spannungseinbruch ist in Phase L1 vorhanden. Der Spannungseinbruch wird alle 10 Sekunden wiederholt.

4.2.1 Geräteeinstellung für die Erfassung des Spannungseinbruchs

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt 3.2 Einstellungen Prüfgerätbeschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, ist das Gerät ordnungsgemäß angeschlossen ist.

Für die Überwachung von Spannungseinbrüchen ist es notwendig, eine Schwellenspannung für den Spannungseinbruch einzurichten. Wenn die Spannung unter den Schwellenwert fällt, wird der Spannungseinbruch aufgezeichnet. Die Grenzwerte werden im Menü MESSEINSTELLUNGEN→ EREIGNISEINSTELLUNG wie in den folgenden Abbildungen dargestellt eingestellt.

Abbildung 4-10: Einstellung der Schwelle für den Spannungseinbruch

Folgende Parameter müssen festgelegt werden:

- Spannungsüberhöhung: 110% dieses Ereignis wird erkannt, wenn am Eingangskanal ein Anstieg der Nennspannung von mehr als 10% auftritt,
- Spannungseinbruch: 90% dieses Ereignis wird erkannt, wenn am Eingangskanal ein Abfallen der Nennspannung von mehr als 10% auftritt,
- Unterbrechung: 5% Dieses Ereignis wird erkannt, wenn die erfasste Spannung an allen Phasen weniger als 5% der Nennspannung beträgt.

Für eine detaillierte Erklärung dieser Werte verwenden Sie die "Hilfe" -Taste an Ihrem Messinstrument.

Um Wellenform und RMS Spannungen für jeden aufgenommenen Spannungseinbruch zu erhalten, muss der Wellenform-Rekorder eingerichtet

werden. Rufen Sie im Menü "REKORDER" das Untermenü "WELLENFORM REK." auf und stellen Sie folgende Parameter ein:

- Auslöser: **Ereignisse** Die Aufzeichnung der Wellenform wird ausgeführt, nachdem ein Ereignis stattgefunden hat. Auf diese Weise fangen wir unser generiertes Ereignis ab,
- Dauer: **2s** nachdem ein Ereignis erkannt wurde, läuft der Wellenform-Rekorder für die angegebene Dauer minus Vorauslösezeit (in Sekunden),
- Vorauslöser: 1s eine Sekunde der Signalhistorie wird aufgezeichnet, bevor der Auslöser auftritt,
- Speichermodus: **Einzel** der Wert dieses Parameters ist in dieser Übung nicht wichtig.

Ein Beispiel für einen solchen Bildschirm ist in der folgenden Abbildung dargestellt.

WAVEFORM REC.			Į 💭 02:3	
TRIGGER	Even	its		
DURATION	2 s			
PRETRIGGER	1 s	1 s		
STORE MODE	Single			
Available memory: 4156	3 records	(7570MB)		
		CONFIC		

Abbildung 4-11: Bildschirm Wellenform Rekorder

Wechseln Sie nun zu RECORDER→ ALLGEMEIN REK und richten Sie den Allgemeinen Rekorder mit den folgenden Parametern ein:

- Intervall: **10 sec** Aufzeichnungsintervall ist auf 10 Sekunden eingestellt
- Ereignisse erfassen: **Ein** (mit Wellenformen) mit dieser Option können wir die Wellenform für jedes Ereignis aufzeichnen
- Alarme erfassen: Aus es werden keine Alarme ausgelöst
- Startzeit: Manuell
- Dauer: **1 Tage** die Aufzeichnung stoppt nach 24 Stunden

GENERAL REC.	¢۲ 00:04			
INTERVAL	10 s			
INCLUDE EVENTS	On (with waveforms - 2 s)			
INCLUDE ALARMS	Off			
INCLUDE SIGNALLING	On			
START TIME	Manual			
DURATION	1 days (316MB)			
Recommended record du Available memory: 10d, 1	ration: 1 days (316MB) 5h (3366MB)			
START	CONFIG CHECK C.			

Abbildung 4-12: Allgemeinen Rekorder Einstellungen

Das Prüfgerät ist nun vorbereitet für die Aufzeichnung von Spannungsereignissen, die vom Application Trainer generiert werden. Bitte starten Sie den Rekorder durch Drücken der Taste F1 ("START"). Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken.

4.2.2 Spannungseinbrüche auf dem Prüfgerät beobachten

Öffnen Sie das Menü REKORDER →EREIGNIS TABELLE auf und überprüfen Sie die aufgezeichneten Ereignisse. Die Ereignistabelle sollte ähnlich wie in der Abbildung unten aussehen.

EVE	NTS	₩ <mark>©</mark> į				
Date 1	1.05.2	2015				
No	L	START	т	Level	Duration	
1	1	14:08:06.708	D	91.92	0h00m0.110s	
2	1	14:08:16.708	D	91.93	0h00m0.120s	
3	1	14:08:26.719	D	91.94	0h00m0.110s	
4	1	14:08:36.720	D	91.94	0h00m0.110s	
5	1	14:08:46.720	D	91.96	0h00m0.110s	
6	1	14:08:56.721	D	91.97	0h00m0.110s	
					^	
	Ph				STAT	

Abbildung 4-13: Ereignistabelle (Spannungseinbrüche)

Zusätzlich kann die Wellenform eines aufgezeichneten Ereignisses aus der REKORDER \rightarrow SPEICHERLISTE angesehen werden, indem Sie eine geeignete aufgezeichnete Wellenform auswählen und durch Drücken der Taste F1 (ANSICHT) anzeigen. Die aufgezeichnete Wellenform sollte ähnlich der, in der Abbildung unten gezeigten sein.

Abbildung 4-14: Spannungseinbruch RMS-Messungen und Wellenform Format

4.2.3 Herunterladen und beobachten aufgezeichneter Daten in PowerView

Nachdem Sie einige Ereignisse aufgenommen haben, können Sie den Rekorder stoppen, indem Sie die Taste F1 (STOP) im Menü REKORDER → ALLGEMEINER REK. drücken. Um die Aufzeichnung in PowerView zu übertragen, müssen Sie zunächst sicherstellen, dass PowerView wie im Abschnitt 3.3 beschrieben eingerichtet ist. Klicken Sie zuerst auf die Schaltfläche "Herunterladen" in der PowerView Symbolleiste. Ein neues Fenster mit zugehörigen Messgeräte Infos öffnet sich. In diesem Fall stehen mehrere Optionen zum Herunterladen zur Verfügung. Zwei Typen von Aufzeichnungen sollten angezeigt werden, wie in der folgenden Abbildung zu sehen ist:

- Ausgelöste Wellenform Die Wellenform des Ereignisses wird in diesem Dateityp gespeichert. Jedes Ereignis wird in einer separaten Datensatz gespeichert.
- Allgemeine Protokollierung Datentrends und Ereignistabellen werden in diesem Dateityp gespeichert. Alle für einen bestimmten Zeitraum aufgezeichneten Daten werden in einem einzigen Datensatz gespeichert.

🚱 Import	↔ <u> </u>
Download Dialog Juing this dialog, you can select individual records for download and define where you want to place them.	
Start time: 11.5.2015 (±08:25,601 Download Stop time: 11.5.2015 (±08:27,601 Create He size: 0.17 M6 Create	id to:
15. Triggered Waveform Snapshot, recorded on 11.5.2015 14:08:35, duration: 2 s 200 ms. File name: R016WAX REC Start time: 11.5.2015 H4:08:35,602 Stort time: 11.5.2015 H4:08:37,602 Stort time: 11.5.2015 H4:0	ad to: te a new site>
16. Triggered Waveform Snapshot, recorded on 11.5.2015 14:08:45, duration: 2 s 200 ms. File name: R017WAX/8EC Start time: 11.5.2015 14:08:45,602 Stop time: 11.5.2015 14:08:47,602 File name: 11.5.2015 14:08:47,602 Stop time: 11.5.2015 14:08:47,602 Stop tim	ad to: te a new site>
17. Triggered Waveform Snapshot, recorded on 11.5.2015 14:08:55, duration: 2 s 200 ms. File name: R018WAX ABC Start time: 11.5.2015 14:08:55,603 Stop the: 11.5.2015 Hote:S5,603 File name: 11.5.2015 Hote:S5,603 Stop the: 11.5.2015 Hote:S5,603 Coreate Coreate	id to: ie a new site>
18. Triggered Waveform Snapshot, recorded on 11.5.2015 14:09:05, duration: 2 s 200 ms. File name: R0019WAV.REC Start time: 11.5.2015 14:09:06,800 Stop time: 11.5.2015 14:09:08,000 File name: 11.5.2015 14:09:08,000 File na	ad to: te a new site>
19. Triggered Waveform Snapshot, recorded on 11.5.2015 14:09:05, duration: 2 s 200 ms. Flename: R020WAVAEC Situ time: 11.5.2015 14:09:05,500 Stop time: 11.5.2015 14:09:00,000 Flename: 11.5.2015 14:00,000 Flename: 11.5.2015 14:00,000 Flename	ad to: te a new site>
20. Triggered Waveform Snapshot, recorded on 11.5.2015 14:09:25, duration: 2 s 200 ms. Flename: R002/WAV.REC Start time: 11.5.2015 14:09:25,601 Stop the: 11.5.2015 14:09:27,801 flexame: 10.7016 flexame: 10.	id to: te a new site>
21. Triggered Waveform Snapshot, recorded on 11.5.2015 14:09:35, duration: 2 s 200 ms. Flename: R0022WAV.REC Stot time: 11.5.2015 14:09:35,602 Stot time: 11.5.2015 14:09:37,802 Flename: R012WAV.REC Stot time: 11.5.2015 14:09:37,802 Flename: R012WAV.REC Flename: R012WAV.REC Stot time: 11.5.2015 14:09:37,802 Flename: R012WAV.REC Stot time: R012WAV.REC Stot time	sd to: te a new site>
22. General Logging, recorded on 11.5.2015 14:08:00, duration: 20 m 29 s 801 ms. File name: R022/328/REC Start time: 11.5.2015 14:08:00,000 Start time: 11.5.2015 14:08:20,001 File name: 1	ad to: e a new site >
Image: Select/Deselect all Show records Image: Select/Deselect all Image: Select/Deselect all Image: Select/Deselect all Image: Transient Image: Select/Deselect all Image: Select/Deselect all	Start importing Cancel

Abbildung 4-15: Dialog für das Herunterladen mit dem ausgewählten Datensatz

Wählen Sie alle Datensätze aus und klicken Sie auf »Import starten«. Auf der Registerkarte "Daten Explorer" werden drei Datensatztypen angezeigt:

- Der ausgelöste Wellenformschnappschuss liefert Spannungs- und Stromabtastwerte für ein erfasstes Spannungsereignis, in unserem Fall ein 5 Perioden langes Einbrechen.
- Inrush Protokollierung liefert Spannungs- und Strom-RMS Messungen für jedes erfasste Ereignis.
- Allgemeine Protokollierung Grunddatensatz, der in der vorherigen Übung beschrieben wurde.

Die Baumansicht des Datenexplorers wird in der folgenden Abbildung gezeigt.

Abbildung 4-16: Datensatz Baumansicht (Einbrüche)

Ein Spannungseinbruch kann in Tabellenform innerhalb der allgemeinen Protokollierung beobachtet werden, wo nur Einbruch-Signaturen gezeigt werden. Diese Art der Darstellung von Einbrüchen wird hauptsächlich für die statistische Auswertung verwendet (zum Beispiel: wie viele Einbrüche während eines bestimmten Zeitraums aufgetreten sind). Tabellen und Zeitachsengrafiken sind in den nächsten beiden Abbildungen dargestellt.

	Metrel PowerView v3							<u>↔</u>]□	ı ×
8.	File <u>Edit View A</u> ction Iools <u>H</u> elp								
10] 🧭 🛃 🖪 💁 🔍 🔍 🧐 陀 🗐 🖸 Opy selected cells 🔜 Copy entire	re table 🛛 🖓 🍰 Download 🤌	Import from director	7 🔁 Remote Real-	time Scope 🔇	🖗 🖻 🖗	0 6 🛛 🧼 🖬 🖩		
	New Document *							•	٠x
	Data Explorer 🛛 🗘 🗙	Inrush Logging (R0021	INR) [11.5.201	Triggered Waveform Sr	napshot (R002	🗸 🚾 Gene	eral Logging (R0023GEN) [11.5 ×	
Han	Group By: Quantity	Record Information Events							
Harmonic Analysis	Group By: Quantity ▼ Training corner Training corner Training corner Training corner	Bevent Intervention Event Type ▼ Dip Dip Dip Dip Dip Dip	Start time / 11.5.2015 14.08.05,700 11.5.2015 14.08.05,700 11.5.2015 14.08.05,700 11.5.2015 14.08.05,720 11.5.2015 14.09.05,721 11.5.2015 14.09.05,722 11.5.2015 14.09.05,723 11.5.2015 14.09.05,723	End time End time 11.5.2015 14:08:16,829 11.5.2015 14:08:16,829 11.5.2015 14:08:16,829 11.5.2015 14:08:36,830 11.5.2015 14:08:36,830 11.5.2015 14:08:26,833 11.5.2015 14:09:26,833 11.5.2015 14:09:26,833	Duration 110 ms 120 ms 110 ms 110 ms 109 ms 109 ms 109 ms 109 ms 109 ms	Phase	Residual voltage 91,9176 91,93060 91,9403 91,9403 91,9403 91,9404 91,9613 91,9673 91,95047 91,95047 91,95047 91,93487 91,92413		Properties
	 ▲ 115 2015 1460-85/20 - Dip (L1) - 110 ms ▲ 115 2015 1460-85/20 - Dip (L1) - 100 ms ▲ 115 2015 1460-86/22 - Dip (L1) - 100 ms ▲ 115 2015 1460-95/22 - Dip (L1) - 100 ms ▲ 115 2015 1460-95/23 - Dip (L1) - 100 ms ▲ 115 2015 1460-95/23 - Dip (L1) - 100 ms ▲ 115 2015 1460-95/23 - Dip (L1) - 100 ms 								

Abbildung 4-17: Spannungseinbrüche dargestellt in Tabellenansicht in PowerView

Abbildung 4-18: Spannungseinbrüche dargestellt in Zeitachsengrafik in PowerView

Jeder Einbruch kann gründlich analysiert werden – durch Aufzeichnungen der Wellenform. PowerView kann zwei Wellenform Datensatzprotokolle anzeigen. Inrush Protokoll und Wellenform Schnappschuss Das Inrush Protokoll stellt die RMS-Werte von Spannung und Strom dar, die in einer Periode gemessen und jede halbe Periode aufgefrischt werden (so genannte RMS½). Das aufgezeichnete Diagramm des Spannungseinbruchs ist in der folgenden Abbildung zu sehen.

Abbildung 4-19: Aufgezeichneter Spannungseinbruch (RMS Werte)

Zur weiteren Analyse kann der Prüfer die Wellenform des Einbruchs beobachten. Aus diesem Diagramm können die Phasenverschiebung und der Startpunkt der Einbruch-Phase der Welle angesehen werden. Die folgende Abbildung zeigt eine solche Ansicht.

Abbildung 4-20: Aufgezeichnete Wellenform eines Spannungseinbruchs

4.3 Übung 3 – Spannungsanstieg

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um einen Spannungsanstieg zu erfassen und zu beobachten. Spannungsanstieg ist ein vorübergehender Anstieg der Spannungshöhe an einem Punkt im elektrischen System oberhalb der gegebenen Grenzwerte. Stellen Sie vor dem Start den Schalter S2 im Application Trainer auf ON, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S2	Spannungsüberhöhung	

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung: 230 V
- Grundstrom: 1000 A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz
- 276 V hoch, 5 Perioden lange Spannungsüberhöhung ist in Phase L1 vorhanden. Die Spannungsüberhöhung wird alle 10 Sekunden wiederholt.

4.3.1 Prüfgeräteeinstellung für die Erfassung des Spannungsanstiegs

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt 3.2 Einstellungen Prüfgerätbeschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN \rightarrow VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (\checkmark) markiert ist, können Sie beginnen die Messungen zu beobachten.

Für die Überwachung von Spannungsüberhöhungen ist es notwendig, eine Schwellenspannung für die Spannungsüberhöhung einzurichten. Wenn die Spannung über den Schwellenwert steigt, wird die Spannungsüberhöhung aufgezeichnet. Die Grenzwerte werden im Menü MESSEINSTELLUNGEN→ EREIGNISEINSTELLUNG wie in den folgenden Abbildungen dargestellt, eingestellt.

Abbildung 4-21: Einstellung der Schwelle für die Spannungsüberhöhung

Folgende Parameter müssen festgelegt werden:

- Spannungsüberhöhung: 110% dieses Ereignis wird erkannt, wenn am Eingangskanal ein Anstieg der Nennspannung von mehr als 10% auftritt,
- Spannungseinbruch: 90% dieses Ereignis wird erkannt, wenn am Eingangskanal ein Abfallen der Nennspannung von mehr als 10% auftritt,
- Unterbrechung: 5% Dieses Ereignis wird erkannt, wenn die erfasste Spannung an allen Phasen weniger als 5% der Nennspannung beträgt.

Für eine detaillierte Erklärung dieser Werte verwenden Sie die "Hilfe" -Taste an Ihrem Messinstrument.

Um Wellenform und RMS Spannungen für jede aufgenommene Spannungsüberhöhung zu erhalten, muss der Wellenform-Rekorder eingerichtet werden. Rufen Sie im Menü "REKORDER" das Untermenü "WELLENFORM REK." auf und stellen Sie folgende Parameter ein:

- Auslöser: **Ereignisse** Die Aufzeichnung der Wellenform wird ausgeführt, nachdem ein Ereignis stattgefunden hat. Auf diese Weise fangen wir unser generiertes Ereignis ab,
- Dauer: **2s** nachdem ein Ereignis erkannt wurde, läuft der Wellenform-Rekorder für die angegebene Dauer minus Vorauslösezeit (in Sekunden),
- Vorauslöser: **1s** eine Sekunde der Signalhistorie wird aufgezeichnet, bevor der Auslöser auftritt,
- Speichermodus: **Einzel** der Wert dieses Parameters ist in dieser Übung nicht wichtig.

Ein Beispiel für einen solchen Bildschirm ist in der folgenden Abbildung dargestellt.

WAVEFORM RE(ر 02:: 		
FRIGGER	Eve	ents			
DURATION	2 s	2 s			
PRETRIGGER	1 s	1 s			
STORE MODE	Sin	gle			
STORE MODE	Sin	gle			
Available memory: 4	1563 record	ls (7570MB)			

Abbildung 4-22: Bildschirm Wellenform Datensatz

Wechseln Sie nun zu RECORDER→ ALLGEMEIN REK und richten Sie den Allgemeinen Rekorder mit den folgenden Parametern ein:

 Intervall: 10 sec¹⁰ – Durchschnittswert Intervall. Alle 10 Sekunden wird ein Durchschnittswert für RMS-Spannung, Strom, Leistung, Oberwellen usw. berechnet und im Speicher gespeichert.

¹⁰ Basierend auf den Normen IEC / EN 50160 sollte das Intervall auf 10 Minuten eingestellt werden und der Wellenform Rekorder sollte eingeschaltet sein. Dies ist genug, um alle Probleme der Netzqualität zu erfassen. Die allgemeine Protokollierung liefert genügend Informationen, wenn die Qualität gut ist. Wenn ein Ereignis eintritt, protokolliert die Wellenform alle zusätzlichen Informationen, die für eine vollständige Analyse benötigt werden.

- Ereignisse erfassen: Ein (mit Wellenformen) dies führt sowohl General- als auch Wellenformrekorder aus.
- Alarme erfassen: **Aus** es werden keine Alarme ausgelöst
- Startzeit: Manuell
- Dauer: 1 Tage die Aufzeichnung stoppt nach 24 Stunden

GENERAL REC.		ĮC 00:0				
INTERVAL	10 s	1				
INCLUDE EVENTS	On (with waveforms - 2 s)					
INCLUDE ALARMS	Off					
INCLUDE SIGNALLING	On					
START TIME	Manual					
DURATION	1 days (316MB)					
Recommended record du Available memory: 10d, 1	ration: 1 days (316MB) 5h (3366MB))				
START	CONFIG	CHECK C.				

Abbildung 4-23: Allgemeinen Rekorder Einstellungen

Das Prüfgerät ist nun vorbereitet für die Aufzeichnung von Spannungsereignissen, die vom Application Trainer generiert werden. Bitte starten Sie den Rekorder durch Drücken der Taste F1 ("START"). Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken.

4.3.2 Spannungsanstiege auf dem Prüfgerät beobachten

Öffnen Sie das Menü REKORDER →EREIGNIS TABELLE auf und überprüfen Sie die aufgezeichneten Ereignisse. Die Ereignistabelle sollte ähnlich wie in der Abbildung unten aussehen.

ate 1	1.05.2	015			
No	L	START	т	Level	Duration
1	123	15:35:54.326	S	276.06	0h00m0.113s
2	1	15:36:04.327	S	276.09	0h00m0.110s
3	1	15:36:14.328	S	276.04	0h00m0.110s
4	1	15:36:24.338	S	276.04	0h00m0.100s
5	1	15:36:34.339	S	276.01	0h00m0.100s
6	1	15:36:44.340	S	275.98	0h00m0.100s

Abbildung 4-24: Ereignistabelle (Spannungsanstiege)

Zusätzlich kann die Wellenform eines aufgezeichneten Ereignisses aus der REKORDER \rightarrow SPEICHERLISTE angesehen werden, indem Sie eine geeignete aufgezeichnete Wellenform auswählen und durch Drücken der Taste F1 (ANSICHT) anzeigen. Die aufgezeichnete Wellenform sollte ähnlich der, in der Abbildung unten gezeigten sein.

Abbildung 4-25: Spannungsanstieg RMS-Messungen und Wellenform Format

4.3.3 Herunterladen und beobachten aufgezeichneter Daten in PowerView

Nachdem Sie einige Ereignisse aufgenommen haben, können Sie den Rekorder stoppen, indem Sie die Taste F1 (STOP) im Menü REKORDER → ALLGEMEINER REK. drücken. Um die Aufzeichnung in PowerView zu übertragen, müssen Sie zunächst sicherstellen, dass PowerView wie im Abschnitt 3.3 beschrieben eingerichtet ist. Klicken Sie zuerst auf die Schaltfläche "Herunterladen" in der PowerView Symbolleiste. Ein neues Fenster mit zugehörigen Messgeräte Infos öffnet sich. In diesem Fall stehen mehrere Optionen zum Herunterladen zur Verfügung. Zwei Typen von Aufzeichnungen sollten angezeigt werden, wie in der folgenden Abbildung zu sehen ist:

- Ausgelöste Wellenform Die Wellenform des Ereignisses wird in diesem Dateityp gespeichert. Jedes Ereignis wird in einer separaten Datensatz gespeichert.
- Allgemeine Protokollierung Datentrends und Ereignistabellen werden in diesem Dateityp gespeichert. Alle für einen bestimmten Zeitraum aufgezeichneten Daten werden in einem einzigen Datensatz gespeichert.

🖳 Import			↔_	. 🗆 🗙
DO ¹	WNload Dialog this dialog, you can select individual records for download and define where you want to place them.			
	Stop time: 11.5.2015 51:56:15,400 File size: 0,17 MB	Create a new site>	•	-
	21. Triggered Waveform Snapshot, recorded on 11.5.2015 15:36:23, duration: 2 s 200 ms. File name: R0023WAV.REC Start time: 11.5.2015 15:36:23,201 Stop time: 11.5.2015 15:36:25,401 File size: 0,17 MB	Download to: 	•	
	22. Triggered Waveform Snapshot, recorded on 11.5.2015 15:36:33, duration: 2 s 200 ms. File name: R0024WAV.REC Start time: 11.5.2015 15:36:33,202 Stop time: 11.5.2015 15:36:35,402 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>	•	
	23. Triggered Waveform Snapshot, recorded on 11.5.2015 15:36:43, duration: 2 s 200 ms. File name: R0025WA1.REC Start time: 11.5.2015 15:56:43,202 Stop time: 11.5.2015 15:56:45,402 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>	•	
	24. Triggered Waveform Snapshot, recorded on 11.5.2015 15:36:53, duration: 2 s 200 ms. File name: R0028WAV.REC Start time: 11.5.2015 15:36:53,403 Stop time: 11.5.2015 15:36:55,603 File size: 0,17 MB	Download to: 	•	
	25. Triggered Waveform Snapshot, recorded on 11.5.2015 15:36:53, duration: 2 s 200 ms. File name: R0027WAV.REC Start time: 11.5.2015 15:36:53,403 Stop time: 11.5.2015 15:36:55,603 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>	•	
	26. Triggered Waveform Snapshot, recorded on 11.5.2015 15:37:13, duration: 2 s 200 ms. File name: R0028WAV.REC Start time: 11.5.2015 15:37:13,200 Stop time: 11.5.2015 15:37:15,400 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>	•	
	27. General Logging, recorded on 11.5.2015 15:35:50, duration: 22 m 9 s 803 ms. File name: R0029GEN.REC Start time: 11.5.2015 15:35:50,000 Stop time: 11.5.2015 15:57:59,803 File size: 4,87 MB	Download to: <create a="" new="" site=""></create>	•	Ţ
Select/Dese	lect all Transient Transie	Start importing	Car	ncel

Abbildung 4-26: Dialog für das Herunterladen mit dem ausgewählten Datensatz

Wählen Sie alle Datensätze aus und klicken Sie auf »Import starten«. Auf der Registerkarte "Daten Explorer" werden drei Datensatztypen angezeigt:

- Der ausgelöste Wellenformschnappschuss liefert Spannungs- und Stromabtastwerte für ein erfasstes Spannungsereignis, in unserem Fall ein 5 Perioden langes Ansteigen.
- Inrush Protokollierung liefert Spannungs- und Strom-RMS Messungen für jedes erfasste Ereignis.
- Allgemeine Protokollierung Grunddatensatz, der in der vorherigen Übung beschrieben wurde.

Die Baumansicht des Datenexplorers wird in der folgenden Abbildung gezeigt.

Abbildung 4-27: Datensatz Baumansicht (Anstiege)

Ein Spannungsanstieg kann in Tabellenform innerhalb der allgemeinen Protokollierung beobachtet werden, wo nur Anstiegs-Signaturen gezeigt werden. Diese Art der Darstellung von Anstiegen wird hauptsächlich für die statistische Auswertung verwendet (zum Beispiel: wie viele Anstiege während eines bestimmten Zeitraums aufgetreten sind). Tabellen und Zeitachsengrafiken sind in den nächsten beiden Abbildungen dargestellt.

	Atrel PowerView v3							<u> </u>	□ ×
E E	e <u>E</u> dit <u>V</u> iew <u>A</u> ction <u>T</u> ools <u>H</u> elp								
10	🗋 📴 📓 🚳 🛴 🔍 🖤 🔍 🗏 Copy selected cells 🔳 Copy senter table 😤 🦾 Download 🔺 Import from directory 📓 Remote 📓 Real-time Scope 😨 😩 🏟 💿 🖉 📓 🙊 📓 📓 📓 📓 🖏 🖏 👘 💿 🦿 📓 🗮 🛃 👘								
	New Document* New Document*								
-	Data Explorer 🕴 🛱 🗙	🦉 General Loggin	g (R0029GEN) [11.5					• >	к 👊
Han	Group By: Quantity	Record Information E	vents						Prop
non	🖃 🌍 Unknown site	Event Type	▼ Start time /	End time	Duration	Phase 👻	Residual voltage		1 ă
l ≩ l	Triggered Waveform Snapshot (R0027WAV) [11.5.2015 15:36	Swell	11.5.2015 15:35:54,326	11.5.2015 15:35:54,440	113 ms	L1, L2, L3	276,05910		Ľ
alys	Inrush Logging (R002/INR) [11.5.2015 15:36:54]	Swell	11.5.2015 15:36:04,327	11.5.2015 15:36:04,437	109 ms	11	276,09160		
<u> </u>	 Inrush Logging (R0028INR) [11.5.2015 15:37:14] 	Swell	11.5.2015 15:36:14,328	11.5.2015 15:36:14,438	109 ms	11	276,03880		
	😑 🗃 General Logging (R0029GEN) [11.5.2015 15:35:50]	Swell	11.5.2015 15:36:24,338	11.5.2015 15:36:24,438	100 ms	ш	276,03510		
	⊕ @ U/1/f	Swell	11.5.2015 15:36:34,339	11.5.2015 15:36:34,439	100 ms	u	276,00570		
	Power & Energy Elicker	Swell	11.5.2015 15:36:44,340	11.5.2015 15:36:44,440	100 ms	u	275,97940		
	Harmonics & THD	Swell	11.5.2015 15:36:54,340	11.5.2015 15:36:54,440	099 ms	u	276,01390		
	Interharmonics	Swell	11.5.2015 15:37:04,341	11.5.2015 15:37:04,451	110 ms	11	276,03540		
	Unbalance	Swell	11.5.2015 15:37:14,341	11.5.2015 15:37:14,452	110 ms		276,06480	•	
	Granny Granny Granny								
	🖻 🜆 Voltage Events								
	- 4 5 2015 15:35:54,326 - Swell (L1, L2, L3) - 113 ms								
	4 11.5.2015 15:36:24,338 - Swell (L1) - 100 ms								
	11.5.2015 15:36:34,339 - Swell (L1) - 100 ms								
	4 11.5.2015 15:36:44,340 - Swell (L1) - 100 ms								
	4 11.5.2015 15:50:54,540 - Swell (L1) - 059 ms								
	11.5.2015 15:37:14,341 - Swell (L1) - 110 ms								
									11

Abbildung 4-28: Spannungsanstiege dargestellt in Tabellenansicht in PowerView

Abbildung 4-29: Spannungsanstiege dargestellt in Zeitachsengrafik in PowerView

Jeder Anstieg kann gründlich analysiert werden – durch Aufzeichnungen der Wellenform. PowerView kann zwei Wellenform Datensatzprotokolle anzeigen. Inrush Protokoll und Wellenform Schnappschuss Das Inrush Protokoll stellt die RMS-Werte von Spannung und Strom dar, die in einer Periode gemessen und jede halbe Periode aufgefrischt werden (RMS 1/2). Das aufgezeichnete Diagramm des Spannungsanstiegs ist in der folgenden Abbildung zu sehen.

Abbildung 4-30: Aufgezeichneter Spannungsanstieg (RMS Werte)

Zur weiteren Analyse kann der Prüfer die Wellenform des Anstiegs beobachten. Aus diesem Diagramm können die Phasenverschiebung und der Startpunkt der Anstiegs-Phase der Welle angesehen werden. Die folgende Abbildung zeigt eine solche Ansicht.

Abbildung 4-31: Aufgezeichnete Wellenform eines Spannungsanstiegs

4.4 Übung 4 – Spannungsunterbrechung

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um eine Spannungsunterbrechung zu erfassen und zu beobachten. Die Spannungsunterbrechung ist eine starke Verringerung der Spannungshöhe an allen Phasen in einem Punkt im elektrischen System unterhalb der angegebenen Grenzwerte. Tatsächlich ist eine Unterbrechung ein spezieller Fall eines Spannungseinbruchs. Stellen Sie vor dem Start den Schalter S3 im Application Trainer auf ON, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S3	Unterbrechung	

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung: 230V
- Grundstrom: 1000A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz
- Spannungsunterbrechung, 5 Perioden lang Spannungsunterbrechung ist in allen Phasen vorhanden. Die Spannungsunterbrechung wird alle 10 Sekunden wiederholt.

4.4.1 Geräteeinstellung für die Erfassung der Spannungsunterbrechung

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt 3.2 Einstellungen Prüfgerätbeschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, können Sie beginnen die Messungen zu beobachten.

Für die Überwachung von Spannungsunterbrechungen ist es notwendig, eine Schwellenspannung für die Spannungsunterbrechung einzurichten. Wenn die Phasen unter Spannung an allen den Schwellenwert fällt. wird die Spannungsunterbrechung aufgezeichnet. Die Grenzwerte werden im Menü MESSEINSTELLUNGEN→ EREIGNISEINSTELLUNG wie folgenden in den Abbildungen dargestellt, eingestellt.

Abbildung 4-32: Einstellung der Schwelle für die Spannungsunterbrechung

Folgende Parameter müssen festgelegt werden:

- Spannungsüberhöhung: 110% dieses Ereignis wird erkannt, wenn am Eingangskanal ein Anstieg der Nennspannung von mehr als 10% auftritt, 90%
 dieses Ereignis wird erkannt, wenn am Eingangskanal ein Abfallen der Nennspannung von mehr als 10% auftritt,
- Unterbrechung: 5% Dieses Ereignis wird erkannt, wenn die erfasste Spannung an allen Phasen weniger als 5% der Nennspannung beträgt.

Für eine detaillierte Erklärung dieser Werte verwenden Sie die "Hilfe" -Taste an Ihrem Messinstrument.

Um DIE Wellenform und RMS Spannungen für jede aufgenommene Spannungsunterbrechung zu erhalten, muss der Wellenform-Rekorder eingerichtet werden Rufen Sie im Menü "REKORDER" das Untermenü "WELLENFORM REK." auf und stellen Sie folgende Parameter ein:

- Auslöser: Ereignisse Die Aufzeichnung der Wellenform wird ausgeführt, nachdem ein Ereignis stattgefunden hat, auf diese Weise fangen wir unser generiertes Ereignis,
- Dauer: 2s nachdem ein Ereignis erkannt wurde, läuft der Wellenform-Rekorder für die angegebene Dauer minus Vorauslösezeit (in Sekunden),
- Vorauslöser: 1s eine Sekunde der Signalhistorie wird aufgezeichnet, bevor der Auslöser auftritt
- Speicher Mode: Einzel der Wert dieses Parameters ist in dieser Übung nicht wichtig.

Ein Beispiel für einen solchen Bildschirm ist in der folgenden Abbildung dargestellt.

WAVEFORM RE	C.		رت <u> </u>		
TRIGGER	Ev	ents			
DURATION	2 s	2 s			
PRETRIGGER	1 s	1 s			
STORE MODE	Sin	Single			
	<u></u>				
Available memory: 4	1563 record	ls (7570MB)			

Abbildung 4-33: Bildschirm Wellenform Rekorder

Wechseln Sie nun zu RECORDER→ ALLGEMEIN REK und richten Sie den Allgemeinen Rekorder mit den folgenden Parametern ein:

- Intervall: 10 sec Durchschnittswert Intervall. Alle 10 Sekunden wird ein Durchschnittswert f
 ür RMS-Spannung, Strom, Leistung, Oberwellen usw. berechnet und gespeichert.
- Ereignisse erfassen: Ein (mit Wellenformen) dies führt sowohl General- als auch Wellenform-Rekorder aus.
- Alarme erfassen: Aus es werden keine Alarme ausgelöst
- Startzeit: manuell
- Dauer: 1 Tag die Aufzeichnung stoppt nach 24 Stunden

GENERAL REC.	Į				
INTERVAL	10 s				
INCLUDE EVENTS	On (with waveforms - 2 s)				
INCLUDE ALARMS	Off				
INCLUDE SIGNALLING	On				
START TIME	Manual				
DURATION	1 days (316MB)				
Recommended record du Available memory: 10d, 1	Ination: 1 days (316MB) 5h (3366MB)				

Abbildung 4-34: Allgemeinen Rekorder Einstellungen

Das Prüfgerät ist nun vorbereitet für die Aufzeichnung von Spannungsereignissen, die vom Application Trainer generiert werden. Bitte starten Sie den Rekorder durch Drücken der Taste F1 ("START"). Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken.

4.4.2 Spannungsunterbrechungen auf dem Prüfgerät beobachten

Öffnen Sie das Menü REKORDER →EREIGNIS TABELLE auf und überprüfen Sie die aufgezeichneten Ereignisse. Die Ereignistabelle sollte ähnlich wie in der Abbildung unten aussehen.

EVE	NTS			w G			
)ate ()1.01.2	000					
No	L	START	т	Level	Duration		
1	123	00:14:37.128	DI	0.99	0h00m0.120s		
2	123	00:14:47.132	DI	0.21	0h00m0.117s		
3	123	00:14:57.133	DI	0.23	0h00m0.120s		
2							

Abbildung 4-35: Ereignistabelle (Spannungsunterbrechungen)

Zusätzlich kann die Wellenform eines aufgezeichneten Ereignisses aus REKORDER → SPEICHERLISTE beobachtet werden, indem eine geeignete aufgezeichnete Wellenform ausgewählt und durch Drücken der Taste F1 (VIEW) beobachtet wird. Die aufgezeichnete Wellenform sollte ähnlich der, in der Abbildung unten gezeigten sein.

Abbildung 4-36: Spannungsunterbrechung RMS-Messungen und Wellenform Format

4.4.3 Herunterladen und beobachten aufgezeichneter Daten in PowerView

Nachdem Sie einige Ereignisse aufgenommen haben, können Sie den Rekorder stoppen, indem Sie die Taste F1 (STOP) im Menü REKORDER → ALLGEMEINER REK. drücken. Um die Aufzeichnung in PowerView zu übertragen, müssen Sie zunächst sicherstellen, dass PowerView wie im Abschnitt 3.3 beschrieben eingerichtet ist. Klicken Sie zuerst auf die Schaltfläche "Herunterladen" in der PowerView Symbolleiste. Ein neues Fenster mit zugehörigen Messgeräte Infos öffnet sich. In diesem Fall stehen mehrere Optionen zum Herunterladen zur Verfügung. Zwei Typen von Aufzeichnungen sollten angezeigt werden, wie in der folgenden Abbildung zu sehen ist:

- Ausgelöste Wellenform Die Wellenform des Ereignisses wird in diesem Dateityp gespeichert. Jedes Ereignis wird in einer separaten Datensatz gespeichert.
- Allgemeine Protokollierung Datentrends und Ereignistabellen werden in diesem Dateityp gespeichert. Alle für einen bestimmten Zeitraum aufgezeichneten Daten werden in einem einzigen Datensatz gespeichert.

🖳 Import		<u>↔</u> _□x
Using	Wnload Dialog g this dialog, you can select individual records for download and define where you want to place them.	
	Instrument Metrel MI 2892 v1.0.1996 is connected Model: MI 2892 Description: N/A Instrument Name: Power Master Congany: Metrel d.d. Hardware version: 5.0 Serial No.: 14470333 Firmware Version: 1.0.1996 Other information: IV/A	4
	30. Triggered Waveform Snapshot, recorded on 1.1.2000 0:16:56, duration: 2 s 199 ms. File name: R0060WAV.REC Start time: 1.1.2000 0:16:58,002 Stop time: 1.1.2000 0:16:58,201 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>
	31. Triggered Waveform Snapshot, recorded on 1.1.2000 0:17:06, duration: 2 s 199 ms. File name: R0061WAV.REC Start time: 1.1.2000 0:17:06,000 Stop time: 1.0.17:08,199 File size: 0,17 MB	Click one or more records to sele Download to: <create a="" new="" site=""></create>
	32. Triggered Waveform Snapshot, recorded on 1.1.2000 0:17:16, duration: 2 s 200 ms. File name: R0062WAV.REC Start time: 1.1.2000 0:17:15,000 Stop time: 1.1.2000 0:17:18,200 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>
	33. Triggered Waveform Snapshot, recorded on 1.1.2000 0:17:26, duration: 2 s 199 ms. File name: R0063WAV.REC Start time: 1.1.2000 0:17:28,001 Stop time: 1.12000 0:17:28,200 File size: 0,17 MB	Download to: <create a="" new="" site=""></create>
	34. Triggered Waveform Snapshot, recorded on 1.1.2000 0:17:36, duration: 2 s 200 ms. File name: R064WAV.REC Start time: 1.12000 0:17:36,001 Stop time: 1.12000 0:17:38,201 File size: 0.17 MB	Download to: <create a="" new="" site=""></create>
	35. General Logging, recorded on 1.1.2000 0:14:30, duration: 3 m 9 s 801 ms. File name: R0065GEN.REC Start time: 1.1.2000 0:14:30,000 Stop time: 1.1.2000 0:17:39,801 File size: 0,70 M8	Download to: <create a="" new="" site=""></create>
☑ Select/Dese	elect all F General F Waveform F Transient Snapshot Snaps	Stat importing Cancel

Abbildung 4-37: Generierte Protokolle

Wählen Sie alle Datensätze aus und klicken Sie auf »Import starten«. Auf der Registerkarte "Daten Explorer" werden drei Datensatztypen angezeigt:

- Der ausgelöster Wellenformschnappschuss liefert Spannungs- und Stromabtastwerte für ein erfasstes Spannungsereignis, in unserem Fall eine 5 Perioden lange Unterbrechung.
- Inrush Protokollierung liefert Spannungs- und Strom-RMS Messungen für jedes erfasste Ereignis.
- Allgemeine Protokollierung Grunddatensatz, der in der vorherigen Übung beschrieben wurde.

Die Baumansicht des Datenexplorers wird in der folgenden Abbildung gezeigt.

Abbildung 4-38: Datensatz Baumansicht (Unterbrechungen)

Eine Spannungsunterbrechung kann in Tabellenform innerhalb der allgemeinen Protokollierung beobachtet werden, wo nur Unterbrechungs-Signaturen gezeigt werden. Diese Art der Darstellung von Unterbrechungen wird hauptsächlich für die statistische Auswertung verwendet (zum Beispiel: wie viele Unterbrechungen während eines bestimmten Zeitraums aufgetreten sind). Tabellen und Zeitachsengrafiken sind in den nächsten beiden Abbildungen dargestellt.

Metrel PowerView v3						↔ _ □	×
Eile Edit View Action Tools Help							
ं 🗋 🧉 🛃 🎯 🔍 🔍 🕫 🐄 🐘 🛍 🆓 🐨 🍰 Download	💐 Import from directory 🛛 🔁 Remot	te 🔽 Real-time Scope 🎡 🖹 🕯	🗰 💿 🚳 🖬 🧇 🖬	iii iii iii iii ¥ 🔅	🗞 📾 😳 🖃 🎚 🖪 🗵 % 🗵 🕈 📰 📰 📰 📰 🖉 🖉 🛃		
New Document * New Document * New Document *						-	×
Data Explorer 🛛 🗘 🛪	General Logging (R0065GI	EN) [1.1				• ×	-
Group By: Quantity	Record Information Events						Prop
Unknown site	Event Type 💌 Start	time / End time	Duration Phase	 Residual voltage 			ertie
Triggered Waveform Snapshot (R0062WAV) [1.1.2000 0:17:1]	Dip, Interruption 1.1.20	100 0:14:37,128 1.1.2000 0:14:37,249	120 ms L1, L2, I	3 0,98982			Ē
Triggered Waveform Snapshot (80053WAV) [1.1.2000 0:17:2]	Dip, Interruption 1.1.20	00 0:14:47,132 1.1.2000 0:14:47,249	116 ms L1, L2, I	3 0,20795			1
Grush Logging (R0063INR) [1.1.2000 0:17:27]	Dip, Interruption 1.1.20	100 0:14:57,133 1.1.2000 0:14:57,253	120 ms L1, L2, I	3 0,22836			1
🗈 📑 Triggered Waveform Snapshot (R0064WAV) [1.1.2000 0:17:3	Dip, Interruption 1.1.20	00 0:15:07,137 1.1.2000 0:15:07,254	116 ms L1, L2, I	3 1,42158			1
Inrush Logging (R0064INR) [1.1.2000 0:17:37]	Dip, Interruption 1.1.20	00 0:15:17,138 1.1.2000 0:15:17,254	116 ms L1, L2, I	3 0,23733			1
General Logging (R0065GEN) [1.1.2000 0:14:30]	Dip, Interruption 1.1.20	00 0:15:27,138 1.1.2000 0:15:27,258	120 ms L1, L2, I	3 0,23752			1
OUDT Optimized St Energy	Dip, Interruption 1.1.20	00 0:15:37,142 1.1.2000 0:15:37,259	116 ms L1, L2, I	3 1,06122			1
Flicker	Dip, Interruption 1.1.20	00 0:15:47,143 1.1.2000 0:15:47,260	116 ms L1, L2, I	3 0,24654			1
Harmonics & THD	Dip, Interruption 1.1.20	00 0:15:57,143 1.1.2000 0:15:57,263	119 ms L1, L2, I	3 0,36137			1
Interharmonics	Dip, Interruption 1.1.20	00 0:16:07,148 1.1.2000 0:16:07,264	116 ms L1, L2, I	3 0,58456			1
Unbalance	Dip, Interruption 1.1.20	00 0:16:17,148 1.1.2000 0:16:17,265	116 ms L1, L2, I	3 0,24746			1
E Signaling	Dip, Interruption 1.1.20	00 0:16:27,149 1.1.2000 0:16:27,269	119 ms L1, L2, I	3 0,76058			1
Voltage Events	Dip, Interruption 1.1.20	00 0:16:37,153 1.1.2000 0:16:37,269	116 ms L1, L2, I	3 0,26375			1
1.1.2000 0:14:37,128 - Dip, Interruption (L1, L2, L3) - 1	Dip, Interruption 1.1.20	00 0:16:47,153 1.1.2000 0:16:47,273	120 ms L1, L2, I	3 0,24601			1
41.1.2000 0:14:47,132 - Dip, Interruption (L1, L2, L3) - 1	Dip. Interruption 1.1.20	00 0:16:57 154 1.1.2000 0:16:57 274	119 ms L1, L2, I	3 1,20016			1
	Dip. Interruption 1.1.20	00 0:17:07 158 1.1.2000 0:17:07 275	116 ms L1. L2. I	3 0.22116			1
11.2000 0:15:07,137 - Dip, Interruption (L1, L2, L3) - 1	Dip Interruption 1.1.20	00 0:17:17 158 1.1.2000 0:17:17 279	120 ms 1 2	3 0.22116			1
112000 0:15:17,138 - Dip, Interruption (11, 12, 13) - 1	Dip Interruption 1120	00.0.17.27.162 1.1.2000.0.17.27.279	116 ms 1 2	3 1 33732			1
1.1.2000 0:15:37,142 - Dip, Interruption (L1, L2, L3) - 1	Dip Interruption 1120	00 0:17:37 163 1 1 2000 0:17:37 280	116 ms 1 2	3 0.19211			1
	orp, interreption attace	1112000 0121107,200	1101113 61, 61, 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1
							1
11.2000 0:16:07,148 - Dip, Interruption (L1, L2, L3) - 1							1
1.1.2000 0:16:17,148 - Dip, Interruption (L1, L2, L3) - 1							1
11.2000 0:16:27,149 - Dip, Interruption (E1, E2, E3) - 1							1
11.2000 0:16:47,153 - Dip, Interruption (L1, L2, L3) - 1							1
							1
1.1.2000 0:17:07,158 - Dip, Interruption (L1, L2, L3) - 1							1
1.1.2000 0:17:17,158 - Dip, Interruption (L1, L2, L3) - 1							1
1.1.2000 0:17:27,162 - Dip, Interruption (L1, L2, L3) - 1							1
112000 0.17.57,105 - Dip, Interruption (EL, E2, E3) - 1							1
							1
							1
							1
4							
Ready							-

Abbildung 4-39: Spannungsunterbrechungen dargestellt in Tabellenansicht in PowerView

Abbildung 4-40: Spannungsunterbrechungen dargestellt in Zeitachsengrafik in PowerView

Jede Unterbrechung kann gründlich analysiert werden – durch Aufzeichnungen der Wellenform. PowerView kann zwei Wellenform Datensatzprotokolle anzeigen. Inrush Protokoll und Wellenform Schnappschuss Das Inrush Protokoll stellt die RMS-Werte von Spannung und Strom dar, die in einer Periode gemessen und jede halbe Periode aufgefrischt werden (RMS 1/2). Das aufgezeichnete Diagramm der Spannungsunterbrechung ist in der folgenden Abbildung zu sehen.

Abbildung 4-41: Aufgezeichnete Spannungsunterbrechung (RMS Werte)

Zur weiteren Analyse kann der Prüfer die Wellenform der Unterbrechung beobachten. Aus diesem Diagramm können die Phasenverschiebung und der Startpunkt der Unterbrechungs-Phase der Welle angesehen werden. Die folgende Abbildung zeigt eine solche Ansicht.

Abbildung 4-42: Aufgezeichnete Wellenform einer Spannungsunterbrechung

4.5 Übung - Leistungs5 – und Energiemessung

In dieser Übung zeigen wir die grundlegenden Schritte der Energie- und Leistungsmessung.

- Aufzeichnung von Wirk- und Blindenergie (lineare Belastung)
- Leistungsmessungen in Echtzeit
- Kapazitive, schaltende und nichtlineare Last
- Aufnahme und Beobachtung der aufgezeichneten Daten auf dem Prüfgerät
- Herunterladen und Beobachten heruntergeladener Daten in PowerView

Stellen Sie vor dem Start den Schalter S1 \div S11 im Application Trainer auf AUS, wie in der Tabelle unten dargestellt.

S3	Unterbrechung
	AUS
S4	Kapazitive Last und
	AUS
S5	Harmonische
	AUS
S6	Unsymmetrie
	AUS
S7	Flicker
	AUS
S8	Inrush
	AUS

<u>C0</u>	Transiant	
29	Transient	
		AUS
S10	Phasenausfall (Schalter)	
		AUS
S11	Falsche Geräteverbindung	
		AUS

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung: 230 V
- Grundstrom: 1000 A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt 3.2 Einstellungen Prüfgerätbeschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, können Sie beginnen die Messungen zu beobachten.

4.5.1 Energie Aufzeichnung

Wenn wir den Energieverbrauch überwachen möchten, muss der Allgemeine Rekorder gestartet werden. Rufen Sie im HAUPTMENÜ das Menü REKORDER auf und gehen Sie dann zum Menü ALLGEMEINER REKORDER. Stellen Sie alle Parameter, wie in der Abbildung unten dargestellt ist, ein.

GENERAL REC.	00:29				
INTERVAL	1 Min				
INCLUDE EVENTS	Off				
INCLUDE ALARMS	Off				
INCLUDE SIGNALLING	On				
START TIME	Manual				
DURATION	12 hours (26MB)				
Recommended record du Available memory: 00d, 0	iration: 7 days (369MB) 00h (0MB)				
START	CONFIG CHECK C.				

Abbildung 4-43: Einstellungen Allgemeiner Rekorder

Nachdem diese Änderungen vorgenommen wurden, starten Sie den Rekorder durch Drücken der Taste F1. Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken. Das Prüfgerät wird verbrauchte Wirk- und Blindenergie ab dem Start des Rekorders aufzeichnen - für jede Phase einzeln und insgesamt.

Die Energiemessung unterteilt sich in zwei Bereiche: in die WIRK-Energie auf Grundlage der Wirkleistungsmessung (kWh) und in die BLIND-Energie auf Grundlage der Messung der grundfrequenten Blindleistung (kVArh). Zusätzlich sind Energie und Leistung in zwei Segmente unterteilt:

- Verbrauchte Energie (Leistung) ist Energie auf der Verbraucherseite verbraucht wird. Sie wird mit einem positiven Vorzeichen dargestellt (siehe Abbildung 4-49).
- Erzeugte Wirkenergie (Leistung) ist die Energie durch den Generator erzeugt wird. Sie wird mit einem negativen Vorzeichen dargestellt.

Abbildung 4-44: Energiezähler und Quadranten Verhältnis

Im Menü MESSUNGEN → ENERGIE hat das Prüfgerät 3 verschiedene Energiemodi:

- 1. Der Mode Gesamtenergie GES wird verwendet, um die Energie über eine vollständige Aufzeichnung zu messen. Wenn der Rekorder startet, summiert er die Energie der vorhandenen Zählerstände.
- 2. Der Mode Letzte Integrationsperiode LETZTES, misst die Energie während der Aufzeichnung über das letzte abgeschlossene Intervall. Sie wird am Ende jedes Intervalls berechnet.
- 3. Der Zähler Aktuelle Integrationsperiode AKT, misst die Energie während der Aufzeichnung über das aktuelle Zeitintervall.

Abbildung 4-45: Energiezähler des Geräts

Während die Aufzeichnung aktiv ist, wird die verbrauchte Energie ständig akkumuliert und wir können sie im MENÜ MESSUNGEN → ENERGIE beobachten. Die aufgezeichnete Energie für jede Phase und die gesamte aufgezeichnete Energie sind unten dargestellt.

ENE	RGY:★		⑥ ≬⊂ 17:09	ENE	RGY:TOTAL		G I
	L1	L2	L3	тоти	AL		
Cons	umed in TOTAL			Consi	umed in LAST INTE	RVAL	
Ep+	00000282.26 00	000282.62 00	0 0 0 0 2 8 2 . 7 1 kWh	Ep+	000000011.095	kWh	
Eq+	00000075.52 00	000076.24 00	0 0 0 0 0 7 5.72 kVArh	Eq+	000000002.978	kVArh	
Gene	rated in TOTAL			Generated in LAST INTERVAL			
Ep-	00000000.00 00	000000.00 00	D 0 0 0 0 0 0 0 . 0 0 kWh	Ep-	0000000000.000	kWh	
Eq-	00 000 000.00 00	000000.00 00	0 0 0 0 0 0 0 0 . 0 0 kVArh	Eq-	000.000.000.000	kVArh	
STAR	START: 14.May.2015 15:53 Duration: 01h 16m 23s HOLD TOT LAST CUR 1 2 3 Å T TREND			STAR	Т: 14.Мау.2015 15 OLD тот LAST с	:53 Duration: 0 ur 1 2 3 ▲ 1	01h 19m 07s T TREND

Abbildung 4-46: Energiezähler

Stoppen Sie den Rekorder über das Menü ALLGEMEINER REKORDER und laden Sie die Daten in PowerView herunter. Die erhaltenen Ergebnisse für die Wirkleistung P, die Grund-Blindleistung Q_{fund} und die effektive Scheinleistung S_{Eff} sind nachstehend dargestellt.

Abbildung 4-47: Aufgezeichnete Leistungsparameter dargestellt im PowerView Zeitdiagramm

4.5.2 Echtzeitmessungen Leistung

Im Menü MESSUNGEN \rightarrow LEISTUNG kann der Prüfer die gemessenen Parameter in Echtzeit beobachten.

Abbildung 4-48: Untermenü Messungen

POWE	ER: 🙏			00:21	POW	/ER:				¢: 00:23
Comb	ined				тот					
	L1	L2	L3	тот.	Comb	oined	Funda	mental	Nonfu	Indamental
P	222.1	222.0	222.1	666.2 kw	P	666.2 kw	P+	666.2 kw	Sen	6.428 kVA
N	59.40	59.81	59.42	178.6 kVar	N	178.6 kVar	Q+	178.6 kVar	Dei	5.538 kVar
s	229 Q	229 Q	229 Q	689 8 144	Se	689.8 kVA	S+	689.7 kva	Dev	3.263 kVar
PF	0.97i	0.97i	0.97i	0.97i	PFe	0.97i	DPF+	0.97i	PH	0.032 kW
	(Harmonic pollut.: 0.93%) (Load unbalance: 0.00%)									
Н										

Abbildung 4-49: Echtzeitmessungen der Leistung

In diesem Fall haben wir eine rein sinus-symmetrische induktive Last ohne jegliche Oberschwingungen. Daher zeigt das Prüfgerät im Bildschirm GES, dass die gesamte verbrauchte Leistung auf die Grundfrequenz konzentriert ist, da nicht-grundfrequente (Oberwellen) Leistungskomponenten fast vernachlässigbar sind. Eine 15° Phasenverschiebung zwischen Spannung und Strom erzeugt jedoch 178 kVar Blindleistung, was in der Praxis durch Hinzufügen einer Kondensatorbank kompensiert werden kann.

Abbildung 4-50: 15° Phasenverschiebung zwischen Spannung und Strom

Echtzeitmessungen können auch in PowerView angezeigt werden, indem Sie die Schaltfläche Echtzeitbereich in der Symbolleiste verwenden, wie unten gezeigt.

letrel PowerView v3								↔	<u>ا</u> ا
e <u>E</u> dit <u>V</u> iew <u>A</u> ction <u>T</u> ools <u>H</u> elp			_						
😂 🖬 😂 🔍 🔍 🕫 🐃 🛝 🗠 🖉 🕹 🖻	ownload 🔺 Import from di	rectory 📴 Remote 🔄 Real-time	: Scope 😳 🗈 🏟 💿		iii iii Y 🏠 🔅 🖉	日田田田	δ Σ φ 💷 📰 🔡		I)
New Document * New Document * New Document *			-						
Data Explorer 4	× / 1 6 2015 14·33·	28							
Course Bas Course the		feter Int. n:]							_
Group by: Quantity	Kecord Information	Phase Diagram							
🖃 🔞 Power Master 🔄	• 4			Peak Values (since l	ast user reset)				0
in 1.6.2015 14:33:28	Symbol	Name	L1	L2	L3	LN	Total	Unit	
🖻 🔯 U/I/f	Umin 1/2	Voltage Min single cycle	0,0633	0,0643	0,0616			v	
😑 📴 Voltage	Umax1/2	Voltage Max single cycle	232,99	234,84	233,87			v	
🗖 U1	UpeakRms	Voltage Max Peak (since	328,73	331,41	330,76	0,9761		v	
🗖 U2	Imin1/2	Current Min half cycle R	0,1510	0,1378	0,1635			A	
U3	Imax1/2	Current Max half cyde R	1.376,2	1.150,8	1.192,2			A	
🛄 UN	IpeakRms	Current Max Peak (since	1.417.5	1.415.9	1.416.5	1.1503		A	
U12	4			TEFE 1459 Power M	leasurement				-
023	- Control	No. 1		12	12		Total	11-16	
	Symbol	Name	11	12	13	LN	Total	Unit	
	▲ Combined								
	P	Active Power	224,76	226,45	225,49		676,71	kW	
	N	Reactive Power	60,150	60,587	60,335		181,07	kVAr	
	S / Se	Phase Apparent Power /	232,67	234,42	233,43		700,52	kVA	
	PF	Phase Power Factor / To	0,9660	0,9660	0,9660		0,9660		
Harmonics & THU	✓ Fundamental								
	Pfind / P+	Phase Fundamental Activ	224 74	226.45	225.49		676.69	FW	
	Of and /O I	Dhase Eurodamental Deas	60,150	60 592	60 225		191.06	Lui Ar	
	Chard / C +	Ohana Evadamental Ann	222.65	00,000	00,520		200,40	LUA	
	Sidnu / St	Phase Purioamental App	232,03	234,42	200,40		700,49	NVA INTA	
	Sutund	Unbalanced Fundamental					4,02/4	KVA	
012h	DPF/DPF+	Phase Displacement Fact	0,9660	0,9660	0,9660		0,9660		
U23h		Load Unbalance					0,5749	%	
Comment Hammania	Non fundamental	ntal							
	SN	Apparent Nonactive Power	1,0328	1,0127	1,0192		4,6838	kVA	
	Di	Current Distortion Nonac	0,7142	0,7133	0,7168		4,5114	kVA	
	Dv	Voltage Distortion Nonac	0,7460	0,7189	0,7245		1,2591	kVA	
	SH	Apparent Harmonic Power	0,0023	0,0022	0,0022		0,0081	kVA	
M Interharmonics	DH	Harmonic Distortion Nona	0,0000	0,0022	0,0000		0,0000	kVA	
Voltage Interharmonic	Рн	Harmonic Active Power	0,0233	0,0004	-0.0024		0.0213	kW	
	HP	Harmonic Pollution	0,4439	0,4320	0,4366		0,6686	%	
				Energy Manage	rement				-
	- · · · · ·			chergy Pleasu	includit.		7.1.1		
	Symbol	Name	u	12	L3	LN	Total	Unit	
	Ep+	Consumed Active Energy	14,385	14,494	14,432		43,311	kWh	
U23ib	Ep-	Generated Active Energy	0,0000	0,0000	0,0000		0,0000	Wh	
U31ib	Eq+	Consumed fundamental r	3,8493	3,8772	3,8611		11,588	kVAr	
Current Interharmonic	Eq-	Genrated fundamental re	0,0000	0,0000	0,0000		0,0000	VAr	

Abbildung 4-51: Echtzeitmessung dargestellt in Tabellenansicht in PowerView

Abbildung 4-52: Phasendiagramm und Unsymmetrie dargestellt in PowerView

4.5.3 Kapazitive, schaltende und nichtlineare Last

In diesem Schritt werden wir die kapazitive Last auf Phase L1, die Schaltlast auf Phase L2 und die nichtlineare (Oberwellen) Last auf Phase L3 einfügen. Stellen Sie zuerst die Schalter S1 ÷ S11 des Application Trainers so ein, wie in der Tabelle unten gezeigt. Dies führt zu 15° Phasenverschiebung in Phase L1, Schaltstrom in Phase L2 und Oberwellen in Phase L3.

Schalter	Beschreibung	Zustand
S4	Kapazitive Last und Energie	

Abbildung 4-53: Erzeugte Leistung auf der zweiten Phase

Die kapazitive Last ist in Phase L1 zu sehen (negative Werte für N und Q und Suffix "c" am Leistungsfaktor), wie in der folgenden Abbildung dargestellt.

POWER:L1				wG)(13:08
L1					
Com	bined	Funda	amental	Nonf	undamental
P	222.2 kw	P	222.2 kw	Sn	1.013 kVA
N	-59.61 kVar	Q	-59.61 kVar	Di	0.709 kVar
S	230.1 KVA	S	230.1 kva	Dν	0.723 kVar
PF	0.97c	DPF	0.97c	PH	-0.001 kw
Hari	monic pollut.	.: 0.449	%		Ĵ
	HOLD		1 2 3 A	. т (TREND

Abbildung 4-54: Kapazitive Last auf Phase L1

In Phase L2 liegt eine Schaltlast an, die alle 10 Sekunden ein- und ausschaltet.

Abbildung 4-55: Schaltende Last auf Phase L2

Die aktuelle Kurve wird in der obigen Grafik angezeigt. Beachten Sie, dass das Aufzeichnungsintervall (1 Minute) länger als die Lastschaltfrequenz (10 Sekunden) ist. Was wir auf dem Prüfgerät sehen, ist:

- METER Bildschirm: Echtzeit-Leistungsmessung (mehrmals pro Sekunde aktualisiert). Die Werte ändern sich alle 10 Sekunden, wenn die Last ein- und ausgeschaltet wird.
- TREND Bildschirm: Leistung gemittelt über ein Zeitintervall von 1 Minute. Durch Feststellung großer Unterschiede zwischen maximalen (^I), durchschnittlichen (^I) und minimalen (^I) aufgezeichneten Werten innerhalb eines einzigen Intervalls können wir schließen, dass eine Schaltlast vorhanden ist. Siehe Abbildung unten.

POWER:T	REND L2	G (08:57
01.Jun.2015 08:55:00	50.0kW/div	
(P2+X)		
226.4kw		
(<u>P2+¥</u>)		
112.8 kw		
(<u>P2+x</u>)		
0.000 kW		
03m 07s	(IMin/div	
VIEW	P NINC S PFI PFc 1 2 :	S & T METER

Abbildung 4-56: Überwachung der Leistung bei schaltender Last

In der Phase L3 fügten wir eine 3^{te} Oberwelle dem Strom hinzu. Als Folge von Stromoberwellen wird die nicht fundamentale Scheinleistung (SS_N) und die Phasenstromverzerrungsleistung (Di) eingeführt, wie in der folgenden Abbildung gezeigt.

P01	WER:L3			WG	13:09		
L 3)						
Com	ibined	Funda	mental	Nonfi	undamental		
P	222.2 kw	P	222.2 kw	Sn	23.02 kVA		
N	63.75 kVar	Q	59.45 kVar	Di	23.01 kVar		
S	231.2 KVA	S	230.0 KVA	Dν	0.741 kVar		
PF	0.96i	DPF	0.97i	PH	0.022 kW		
Harmonic pollut.: 10.0%							
HOLD 1 2 3 A T TREND							

Abbildung 4-57: Überwachung der Leistung bei induktiver Last mit 10% der Oberwellen am Stromkanal I_3

Beenden Sie die Aufnahme, indem Sie das Menü REKORDER → ALLGEMEINER REKORDER aufrufen und die Taste F1 (STOP) drücken. Der gespeicherte Datensatz kann am Prüfgerät angesehen oder an PowerView übertragen werden. Importieren Sie Ihre Aufnahmen in die Metrel PowerView Software, wie im Abschnitt 4.1.3 beschrieben. Alle Energie- und ergiebezogenen Messungen können über die Option "Leistung und Energie" auf der Registerkarte "Daten-Explorer" aufgerufen werden. Strom, aktive verbrauchte Leistung, die reaktive verbrauchte Leistung und der Leistungsfaktor sind im nachstehenden Beispiel dargestellt. Beachten Sie, dass in den Diagrammen ein großer Unterschied zwischen den Durchschnittswerten und den Aktiven Durchschnittswerten (AvgOn) besteht, was deutlich zeigt, dass es sich um eine Schalt-Last handelt

Abbildung 4-58: Erweiterte Darstellung für Leistung und Energie

4.6 Übung 6 – Oberwellenmessung

In dieser Übung zeigen wir, wie das Instrument eingerichtet werden muss, um Oberwellen zu messen und 1940ltaje zu analysieren. Stellen Sie vor dem Start den Schalter S5 im Application Trainer auf ON, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S5	Oberwellen	

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung: 230 V
- Grundstrom: 1000 A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz
- Spannungsoberwellen
 - 3. Harmonische:5%,
 - 5. Harmonische: 5%,

- 7. Harmonische: 5%,
- Stromoberwellen
 - o 3. Harmonische:15%,
 - o 5. Harmonische: 15%,
 - o 7. Harmonische: 15%,

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt 3.2 Einstellungen Prüfgerätbeschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, können Sie beginnen die Messungen zu beobachten.

4.6.1 Echtzeitmessungen

Mit dem Menü MESSUNGEN \rightarrow OBERWELLEN kann der Prüfer die Oberwellenmessung in Echtzeit beobachten.

Abbildung 4-59: Untermenü Messungen

HARM	IONICS:	٨			ļ(02:20	HARMONICS: L1	ĮC 02:21
%, %	U1	11	U 2	12	U3	13		
THD	8.59	26.0	8.61	25.9	8.59	25.9	229.9v	
h 3	4.97	15.0	4.99	15.0	4.97	15.0	100.0%	
h 4	0.01	0.03	0.01	0.06	0.01	0.05	(<u>11 h01</u>)	
h 5	4.96	15.0	4.97	15.0	4.97	15.0	99.88A 99.88A	
h 6	0.01	0.09	0.01	0.02	0.02	0.05	100.0%	
h 7	4.95	15.0	4.95	15.0	4.94	15.0		
\equiv				-				,
HC	DLD	VIEW	1 2	3 N 👗 🛆	BA	R	HOLD VIEW 1 2 3	N METER

Abbildung 4-60: Echtzeitmessungen von Spannung und Strom

4.6.2 Oberwellenmessungen aufzeichnen

Grundlegendes Werkzeug für eine Analyse der Netzqualität ist die Aufzeichnung von Parametern eines elektrischen Systems. In diesem Schritt erstellen wir eine Aufzeichnung und beobachten sie auf dem Prüfgerät, da dies ein typischer Fall für die Fehlersuche ist.

Rufen Sie im HAUPTMENÜ das Menü REKORDER auf und gehen Sie dann zum Menü ALLGEMEINER REKORDER. Stellen Sie alle Parameter, wie in der Abbildung unten dargestellt ist, ein.

GENERAL REC.	00:23
INTERVAL	10 s
INCLUDE EVENTS	Off
INCLUDE ALARMS	Off
INCLUDE SIGNALLING	Off
START TIME	Manual
DURATION	1 days (316MB)
Recommended record du Available memory: 10d, 0	rration: 1 days (316MB) /2h (3191MB)
START	CONFIG CHECK C.

Abbildung 4-61: Einstellungen Allgemeiner Rekorder

Nachdem diese Änderungen vorgenommen wurden, starten Sie den Rekorder durch Drücken der Taste F1 (START). Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken.

Während die Aufnahme aktiv G ist, kann der Prüfer alle aufgezeichneten Parameter in den TREND Bildschirmen auswerten, die in jedem Untermenü MESSUNGEN erscheinen. Die folgenden Abbildungen zeigen Spannungstrends (MESSUNG \rightarrow Oberwellen \rightarrow TREND (2x Taste F4 drücken). Die Oberwellen Auswahl und Einheit wird im Menü Ansicht gewählt (Taste F2).

Abbildung 4-62: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät

Beenden Sie die Aufnahme nach einigen Minuten, indem Sie das Menü REKORDER \rightarrow ALLGEMEINER REKORDER aufrufen und die Taste F1 (STOP) drücken. Der gespeicherte Datensatz kann auf dem Prüfgerät durch Aufrufen des Menüs REKORDER \rightarrow SPEICHERLISTE angesehen werden. Eine Liste der verfügbaren Datensätze wird angezeigt. Wählen Sie den neuesten Datensatz und öffnen Sie ihn durch Drücken der Taste "ANSICHT".

MEMORY LIS	т 🕴 🛄 00:47	VIEW	R (02:35
Record No.	11/11	U,I,F	
		POWER	
FILE NAME	R0009GEN	ENERGY	
ТҮРЕ	GENERAL REC.	FLICKERS	
INTERVAL	3 s	UNBAL.	
START	01.Jan.2000 11:20	HARMONICS	
END	01.Jan.2000 13:11	TEMPERATURE	
SIZE	85.7MB	SIGNALLING	
VIEW	CLEAR CLR ALL	VIEW	

Abbildung 4-63: Betrachten von Datensätzen über das Untermenü Speicherliste

PowerView bietet mehrere Optionen, um Oberwellen und ihre entsprechenden THDs anzusehen. Auf alle Messungen kann über den Knoten "Oberwellen & THD" aus dem "Daten Explorer" zugegriffen werden. Jede Messung kann entweder durch eine Grafik oder eine Tabelle dargestellt werden. Als Beispiel zeigt die folgende Abbildung THD und dritte Oberwelle im Zeitdiagramm.

Abbildung 4-64: THD und 3te Oberwellen-Frequenz im Zeitdiagramm

4.7 Übung 7 – Aufzeichnung Unsymmetrie

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um die Spannungs- und Stromunsymmetrie zu überwachen. Stellen Sie vor dem Start den Schalter S6 im Application Trainer auf EIN, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung198oltaje: U1=240, U2=230V, U3=220V
- Grundstrom: I1=900A, I2=1000A, I3=1100A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt beschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, können Sie beginnen die Messungen zu beobachten.

4.7.1 Echtzeitmessungen

Durch öffnen des Menüs MESSUNGEN kann der Benutzer die gemessenen Parameter in Echtzeit beobachten.

Abbildung 4-65: Untermenü Messungen

Abbildung 4-66: Echtzeitmessungen von Phasendiagramm und Unsymmetrie

4.7.2 Unsymmetriemessungen aufzeichnen

Grundlegendes Werkzeug für eine Analyse der Netzqualität ist die Aufzeichnung von Parametern eines elektrischen Systems. In diesem Schritt erstellen wir eine Aufzeichnung und beobachten sie auf dem Prüfgerät, da dies ein typischer Fall für die Fehlersuche ist.

Gehen Sie vom Hauptmenü aus zum Fenster REKORDER und wechseln Sie dann zum Menü ALLGEMEIN REK. Hier muss der Prüfer alle Parameter einstellen, wie in der Abbildung unten gezeigt.

GENERAL REC.	Į 00:23			
INTERVAL	10 s			
INCLUDE EVENTS	Off			
INCLUDE ALARMS	Off			
INCLUDE SIGNALLING	Off			
START TIME	Manual			
DURATION	1 days (316MB)			
Recommended record du Available memory: 10d, 0	ration: 1 days (316MB) 2h (3191MB)			
START	CONFIG CHECK C.			

Abbildung 4-67: Einstellungen Allgemeiner Rekorder

Das Prüfgerät ist nun vorbereitet für die Aufzeichnung der Parameter des elektrischen Systems, die vom Application Trainer generiert werden. Bitte starten Sie den Rekorder durch Drücken der Taste F1 ("START"). Der Rekorder kann jederzeit gestoppt werden, indem Sie die Taste F1 (STOP) drücken.

Während die Aufnahme aktiv \bigcirc ist, kann der Prüfer alle aufgezeichneten Parameter in den TREND Bildschirmen auswerten, die in jedem Untermenü MESSUNGEN erscheinen. Die folgende Abbildung zeig Spannungstrends (MESSUNG \rightarrow Phasendiagramm \rightarrow TREND (2x Taste F4 drücken).

UNBAL.:TREND		GI. 09:28	UNBAL.:TREND	<mark>©</mark> i: 09:29
02.Jun.2015 09:27:40			02.Jun.2015 09:28:40	
229.9			8.42	
229.9v			8.41v	
55/div			02m 13s	
U+u-u-i	+ l- lo u-	METER	U+U-UoI+I-Iou-	METER

Abbildung 4-68: Darstellung des Trends der 3. Oberwelle auf dem Prüfgerät

Nach einigen Minuten kann die Aufzeichnung beendet werden. Öffnen Sie das Menü REKORDER \rightarrow SPEICHERLISTE. Eine Liste der verfügbaren Datensätze wird angezeigt. Wählen Sie den neuesten Datensatz und öffnen Sie ihn durch Drücken der Taste "ANSICHT". Wählen Sie UNSYM, um die unsymmetrischen Daten zu erhalten.

MEMORY LIS	т 09:32	VIEW	R (💭 09:33
Record No.	12/12	U,I,f	
_		POWER	
FILE NAME	R0014GEN	ENERGY	
ТҮРЕ	GENERAL REC.	FLICKERS	
INTERVAL	10 s	UNBAL.	
START	02.Jun.2015 09:27	HARMONICS	
END	02.Jun.2015 09:32	TEMPERATURE	
SIZE	1.08MB	SIGNALLING	
VIEW	GLEAR GLR ALL	VIEW	

Abbildung 4-69: Betrachten von Datensätzen über das Untermenü Speicherliste

PowerView bietet mehrere Optionen zum Betrachten von Unsymmetrien. Auf alle Messungen kann über den Knoten "Unsymmetrie" aus dem "Daten Explorer" zugegriffen werden. Jede Messung kann entweder durch eine Grafik oder eine Tabelle dargestellt werden. Der Bildschirm Unsymmetrie ist in der Abbildung unten dargestellt.

Abbildung 4-70: Zeitdiagramm Unsymmetrie

4.8 Übung 8 – Flicker

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um die Spannungs-Flicker zu überwachen. Stellen Sie vor dem Start den Schalter S7 im Application Trainer auf EIN, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S7	Flicker	

Der Application Trainer simuliert ein elektrisches System mit folgenden Parametern:

- Grundspannung: U1=230V
- Flicker Pstu1=1; Pstu1=1,5; Pstu1=1,8
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz

Der Power Master MI 2892 muss an den Application Trainer angeschlossen und wie im vorherigen Abschnitt beschrieben, eingerichtet werden. Es empfiehlt sich, den Verbindungsprüfungsstatus im Menü MESSEINSTELLUNGEN →VERBINDUNGSEINSTELLUNG zu beobachten. Wenn es mit einem OK Zeichen (✓) markiert ist, können Sie beginnen die Messungen zu beobachten.

4.8.1 Echtzeitmessungen

Durch öffnen des Menüs MESSUNGEN kann der Prüfer die gemessenen Parameter in Echtzeit beobachten.

Bitte beachten Sie, dass Spannungseinbrüche und Spannungsanstiege großen Einfluss auf die Flickermeter-Filter haben, was zu Fehlmessungen führen kann. Um zuverlässige Werte zu erhalten, empfiehlt es sich daher, zu überprüfen, ob Ereignisse vorhanden sind, und dann den Verlauf der vorherigen Flickermessung durch Drücken der Funktionstaste F2 (Reset) zurückzusetzen. Dies garantiert, dass die erhaltene Flickermessung P_{st} den ersten zuverlässigen Wert nach ungefähr 20 Minuten der Messung darstellt.

FLICKERS			↓	FLICKERS			Į 🛄 10:17
	L1	L2	(L3)		L1	L2	(L3)
Urms	234.6	231.5	221.3 v	Urms	231.3	228.5	218.5 v
Pinst,max				Pinst,max	7.693	6.913	7.736
Pst(1min)				Pst(1min)	1.010	1.517	1.823
Pst				Pst	1.013	1.519	1.823
Pit				Pit			
							^
HOLD	RESET			HOLD	RESET		

Abbildung 4-71: Echtzeitmessungen Flicker

4.8.2 Flickermessungen aufzeichnen

Grundlegendes Werkzeug für eine Analyse der Netzqualität ist die Aufzeichnung von Parametern eines elektrischen Systems. In diesem Schritt erstellen wir eine Aufzeichnung und beobachten sie auf dem Prüfgerät, da dies ein typischer Fall für die Fehlersuche ist.

Gehen Sie vom Hauptmenü aus zum Fenster REKORDER und wechseln Sie dann zum Menü ALLGEMEIN REK. Hier muss der Prüfer alle Parameter einstellen, wie in der Abbildung unten gezeigt.

GENERAL REC.	00:23			
INTERVAL	10 s			
INCLUDE EVENTS	Off			
INCLUDE ALARMS	Off			
INCLUDE SIGNALLING	Off			
START TIME	Manual			
DURATION	1 days (316MB)			
Recommended record du Available memory: 10d, 0	ration: 1 days (316MB) 2h (3191MB)			
START	CONFIG CHECK C.			

Abbildung 4-72: Einstellungen Allgemeiner Rekorder

Nachdem alle diese Änderungen vorgenommen wurden, können Sie den Recorder durch Drücken der F1Taste starten. Auch wenn wir als Ende der Messung 1 Tag eingestellt haben, kann der Rekorder jederzeit durch Drücken der F1 (STOP) Taste gestoppt werden.

Während die Aufnahme aktiv \bigcirc ist, kann der Prüfer alle aufgezeichneten Parameter in den TREND Bildschirmen auswerten, die in jedem Untermenü MESSUNGEN erscheinen. Die folgenden Abbildungen zeigen Spannungstrends (MESSUNG \rightarrow Flicker \rightarrow TREND (2x Taste F4 drücken).

FLICKERS:	TREND 👗		(3t 💷] 11:11
02.Jun.2015 10:47:00	0.200/div				
Pst1 <u>¥</u>)					
1.012					
(<u>Pst2</u> ¥)					
1.518					
(<u>Pst3</u> E)					
1.823					
49m 28s	(10Min/div)				
	PSI PLT PST	min 12	3 👗	MEI	EK

Abbildung 4-73: Darstellung der Flicker auf dem Prüfgerät

Um einige Werte zu erhalten, sollte der Rekorder mindestens 30 Minuten laufen. Beenden Sie die Aufnahme, nachdem Sie einige brauchbare Werte erhalten haben, indem Sie das Menü REKORDER \rightarrow ALLGEMEINER REKORDER aufrufen und die Taste F1 (STOP) drücken. Wenn der Prüfer aufgezeichnete Daten auf dem Prüfgerät beobachten möchte, rufen Sie das Menü REKORDER \rightarrow SPEICHERLISTE auf. Wählen Sie den neuesten Datensatz und öffnen Sie ihn durch Drücken der Taste "ANSICHT".

MEMORY LIS	ST 09:32	VIEW	R (00:13
Record No.	12/12	U,I,F	
		POWER	
FILE NAME	R0014GEN	ENERGY	
ТҮРЕ	GENERAL REC.	FLICKERS	
INTERVAL	10 s	UNBAL.	
START	02.Jun.2015 09:27	HARMONICS	
END	02.Jun.2015 09:32	TEMPERATURE	
SIZE	1.08MB	SIGNALLING	
		<u></u>	/ •
VIEW	CLEAR CLR ALL	VIEW	

Abbildung 4-74: Betrachten von Datensätzen über das Untermenü Speicherliste

PowerView bietet mehrere Optionen zum Betrachten von Flicker. Auf alle Messungen kann über den Knoten "Flicker" aus dem "Daten Explorer" zugegriffen werden. Jede Messung kann entweder durch eine Grafik oder eine Tabelle dargestellt werden. Ein Beispiel ist in der folgenden Abbildung dargestellt.

Abbildung 4-75: Zeitdiagramm Flicker

4.9 Übung 9 – Aufzeichnung Inrush

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um Strom-Inrush Ereignisse zu erfassen. Ein Einschaltstrom (Inrush) tritt typischerweise während eines Motorstart-Ereignisses auf. Stellen Sie vor dem Start den Schalter S8 im Application Trainer auf EIN, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S8	Inrush	

Der Application Trainer emuliert ein Inrush-Ereignis mit den folgenden Parametern:

- Grundspannung 204oltaje: U1=U2=U3=230V
- Grundstrom: I1=I2=I3=1000A
- Einschaltstrom an I1 mit max. 1700A, einer Dauer von 200 ms, Wiederholung alle 10 Sekunden
- Last Typ: Induktiv
- Last Eigenschaft: Motor Last (Verbrauch von elektrischer Leistung)
- Frequenz: 50/60 Hz

4.9.1 Echtzeitmessungen

In der Regel können Inrush-Ereignisse manuell ausgelöst werden (durch Starten eines Motors). Inrush Ereignisse sind jedoch manchmal außerhalb unserer Kontrolle und treten zufällig auf. Es wird empfohlen, mit der Überwachung des maximalen (MAX), minimalen (MIN) und des RMS Stroms im Menü MESSUNGEN \rightarrow U, I, f, wie unten dargestellt zu beginnen. Vor dem überwachen muss die RESET-Taste (F2) gedrückt werden. In dieser Übung wird der vom Application Trainer generierter Maximalstrom auf mehr als 1700 A erhöht (nach Drücken der RESET-Taste). Dies zeigt deutlich ein mögliches Inrush Ereignis

U1 11 RMS 230.0v 999.6, THD 0.08% 0.07 CF 1.42 1.42 PEAK 325.4v 1416, MAX 230.1v 1786, MIN 143.18v 999.2,4	U,I,f:L1		Į 🛄 11:39
RMS 230.0v 999.6/ THD 0.08% 0.079 CF 1.42 1.42 PEAK 325.4v 1416/ MAX 230.1v 1786/ MIN 143.18v 999.2/		U1	•
THD 0.08% 0.07 CF 1.42 1.42 PEAK 325.4v 1416/ MAX 230.1v 1786/ MIN 143.18v 999.2/	RMS	230.0v	999.6A
CF 1.42 1.42 PEAK 325.4v 1416/ MAX 230.1v 1786/ MIN 143.18v 999.2/	THD	0.08%	/ 0.07%
PEAK 325.4v 1416/ MAX 230.1v 1786/ MIN 143.18v 999.2/	CF	1.42	1.42
MAX 230.1v 1786/ MIN 143.18v 999.2/	PEAK	325.4v	1416A
MIN 143.18v 999.24	MAX	230.1v	1786A
	MIN	143.18v	999.2A
f 49.996Hz	f	49.996нz	
	HOLD		△ SCOPE

Abbildung 4-76: Untermenü Messungen

4.9.2 Inrush Erfassung

Um Inrush Wellenformen zu erfassen, muss der REKORDER \rightarrow WELLENFORM REKORDER gewählt werden. Dieser Rekorder Typ wurde speziell zur Erfassung von Ereignissen wie Inrush oder Spannungseinbrüchen entwickelt. Um einen Inrush zu erfassen, muss der Trigger "Level I" ausgewählt werden. Wenn Sie die Werte RMS (996 A) und MAX (1786 A) aus der obigen Abbildung sich ansehen, können Sie den Strom LEVEL auswählen, bei dem die Inrush Erfassung auslöst. In diesem Fall haben wir 1100A Trigger Level mit steigender Flanke gewählt. Das Prüfgerät startet den Wellenform Rekorder, wenn der gemessene Strom den vorgegebenen Schwellenwert erreicht (siehe Abbildung unten).

		Current
		Pretrigger (1 sec)
WAVEFORM REC.	12:08	
TRIGGER	Levell	↓ /
LEVEL	110.0% (1100.0A)	
SLOPE	Rise	
DURATION	2 s	Ingger Point // Rms(10msec)
PRETRIGGER	1 s	Trigger
STORE MODE	Continuous (max. 200 rec.)	Current level
Available memory: 20	608 records (3753MB)	
START	IELP CONFIG CHECK C.	Waveform record
		HARD REC001.WAV REC001.INR

Abbildung 4-77: Strom Level Auslösung (Inrush)

Nachdem der WELLENFORM REKORDER eingerichtet wurde, können wir mit der Aufzeichnung fortfahren. Der Rekorder wird durch Drücken der Taste START (F1)

gestartet Ein gelbes Symbol in der Statusleiste W zeigt an, dass der Wellenform Rekorder aktiv ist und auf ein Inrush Ereignis wartet. Sobald der Strom auf irgendeinem Kanal den gegebenen LEVEL erreicht, beginnt er mit der Aufzeichnung. Die aktive Aufzeichnung wird in der Statusleiste mit einem roten Symbol angezeigt

Abbildung 4-78: Überwachung der Strom Wellenform während der Inrush Erfassung

Nachdem ein Inrush Ereignis erfasst wurde, kann es im Menü "REKORDER \rightarrow SPEICHERLISTE" angesehen werden, wie in den folgenden Abbildungen dargestellt.

MEMORY LIST	14:03	WAVEFORM REC. L1	R 💭 14:04
Record No. 1	9/19	02.Jun.2015 13:55:4.6463	ΛΛΛΛΛ
FILE NAME	R0022WAV		+ + + + + + + + + + + + + + + + + + +
ТҮРЕ	WAVEFORM REC.		\lor \lor \lor \lor \lor \lor \lor
TRIGGER	Level I 110.0% (1100.0A)		
SLOPE	Rise	1222A	Α.
DURATION	2 s		
Trigger time	02.Jun.2015 13:55:04.566		
SIZE	279kB	t: 0.0797s	
VIEW	CLEAR CLR ALL	U U,I U,I U/I 1	2 3 N 🛦

Abbildung 4-79: Echtzeitmessungen Strom Inrush

4.9.3 Herunterladen und beobachten aufgezeichneter Daten in PowerView

Aufgezeichnete Daten können zur weiteren Analyse in PowerView importiert werden Bitte beachten Sie, dass PowerView vor diesem Schritt, wie im Abschnitt 1.2 beschrieben, installiert und eingerichtet werden muss.

Öffnen Sie PowerView und klicken Sie auf die Schaltfläche "Herunterladen" in der Symbolleiste. Ein neues Fenster mit den Informationen zum Prüfgerät und der Liste der verfügbarer Aufzeichnungen wird angezeigt (siehe Abbildung unten). Wählen Sie die gewünschten Datensätze aus (die aktuelle Auswahl ist grün markiert) und klicken Sie dann auf die Schaltfläche "Import starten".

🖳 Import			↔ _ 🗆 X	
Dow Using th	nload Dialog his dialog, you can select individual records for download and define where you want to place the	hem.		
	6. General Logging, recorded on 2.6.2015 10:21:40, duration: 1 h 1 m 39 s File name: R0017GEN.REC Start time: 2.6.2015 10:21:40,000 Stop time: 2.6.2015 11:23:19,801 File size: 13,55 MB	801 ms. Download to: <create a="" new="" site=""></create>	×	
	7. Triggered Waveform Snapshot, recorded on 2.6.2015 11:29:07, duration File name: R0018WAV.REC Start time: 2.6.2015 11:29:07,600 Stop time: 2.6.2015 11:29:09,800 File size: 0,27 MB	: 2 s 200 ms. Download to: <create a="" new="" site=""></create>	•	
	8. Triggered Waveform Snapshot, recorded on 2.6.2015 13:54:23, duration File name: R0019WAV.REC Start Ime: 2.6.2015 13:54:23,401 Stop Ime: 2.6.2015 13:54:25,601 File size: 0,27 MB	: 2 s 200 ms. Download to: <create a="" new="" site=""></create>	•	
	9. Triggered Waveform Snapshot, recorded on 2.6.2015 13:54:33, duration File name: R0020WAV.REC Start time: 2.6.2015 13:54:33,401 Stop time: 2.6.2015 13:54:35,601 File size: 0,27 MB	: 2 s 200 ms. Download to: <create a="" new="" site=""></create>	T	
	10. Triggered Waveform Snapshot, recorded on 2.6.2015 13:54:43, duration: 2 s 200 ms. File name: R0021WAV.REC Start time: 2.6.2015 13:54:43,402 Stop time: 2.6.2015 13:54:43,602 File size: 0.27MB CCreate a new site >			
	11. Triggered Waveform Snapshot, recorded on 2.6.2015 13:55:03, duration File name: R0022WAV.REC Start time: 2.6.2015 13:55:03,400 Stop time: 2.6.2015 13:55:05,600 File size: 0,27 MB	n: 2 s 200 ms. Download to: <create a="" new="" site=""></create>	• •	
Select/Deselect	t all General Vaveform Transient Vaveform	Start importing	Cancel	

Abbildung 4-80: Download Dialog

Nach dem Import wird die Registerkarte "Datensatz Information" angezeigt. Diese Registerkarte enthält grundlegende Informationen zum importierten Datensatz.

Datensätze aus den Aufzeichnungen können über die Registerkarte "Daten Explorer" (auf der linken Seite) abgerufen werden.

Abbildung 4-81: Inrush Datensatz Information

Für jede Wellenformaufzeichnung, die vom Instrument aufgezeichnet wird, zeigt PowerView zwei Datensätze an:

- Wellenformaufzeichnung: Aufzeichnung mit Wellenformproben
- Inrush Aufzeichnung: Aufzeichnung mit RMS¹/₂ (zyklische RMS aktualisiert bei jedem Halbzyklus) Beispielen

Für die meisten PQ-Fälle ist die Inrush Aufzeichnung die optimale Wahl für die Überwachung von Motorstarts, Einbrüchen und anderen Ereignissen, die eine Dauer von 10 ms ÷ 30 s haben. Eine Inrush Aufzeichnung ist in der Abbildung unten dargestellt. Der Inrush Strom ist zusammen mit dem Spannungsstoß während des Motorstarts deutlich sichtbar.

Abbildung 4-82: Inrush Diagramm Ansicht

Wenn wir die Spannungs- oder Stromform überwachen möchten, oder an Phasenänderungen während solcher Ereignisse interessiert sind, sollte die Wellenformaufzeichnung verwendet werden. Hier können wir jede Probe von Strom und Spannung sehen. Zusätzlich werden Daten auf 10/12 Zyklen Pakete aufgeteilt, für die alle relevanten Parameter (RMS U, RMS I, THD, Leistung) berechnet werden. Daher kann der Prüfer genau überprüfen, welche Art von Stress während eines solchen Ereignisses auf das beobachtete Objekt ausgeübt wurde.

Abbildung 4-83: Inrush Strom Wellenform Aufzeichnung

4.10 Übung 10 – Aufzeichnung Transienten

In dieser Übung zeigen wir, wie das Prüfgerät eingerichtet werden muss, um Transienten zu erfassen. Transienten sind hauptsächlich Folgen von Last- oder Kondensatorbankschalten. Stellen Sie vor dem Start den Schalter S9 im Application Trainer auf EIN, wie in der Tabelle unten dargestellt. Die übrigen Schalter müssen auf AUS gestellt sein.

Schalter	Beschreibung	Zustand
S9	Transient	

Der Application Trainer emuliert ein Transienten Ereignis mit den folgenden Parametern:

- Grundspannung 209oltaje: U1=U2=U3=230 V
- Grundstrom: I1=I2=I3=1000 A
- Last Typ: Induktiv
- Last Eigenschaft: Last (Stromverbrauch)
- Frequenz: 50/60 Hz
- Transienten Spike: 420Vpk, Dauer <3 ms, Wiederholung alle10 s

4.10.1 Transienten Erfassung

Um Transienten zu erfassen, muss der REKORDER → TRANSIENTEN REKORDER gewählt werden. Dieser Recorder wurde speziell zur Erfassung von Transienten entwickelt. Der Transienten Rekorder ist ähnlich dem Wellenform Rekorder. Bei Aktivierung des speichert er einen wählbaren Satz an Pre- und Post-Trigger Abtastungen bei Trigger-Aktivierung, jedoch mit einer 10-fach höheren Abtastrate (~ 50 k Abtastungen / Sek.) Der Rekorder kann durch die Hüllkurve oder ein Level ausgelöst werden. Der Hüllkurven-Auslöser wird aktiviert, wenn die Differenz zwischen gleichen Abtastungen der Auslösesignale aus zwei aufeinander folgenden Perioden des Eingangsspannungssignals größer ist als der vorgegebene Grenzwert.

Abbildung 4-84: Feststellung des Transienten-Auslösers (Hüllkurve)

TRIGGER	Envelope			
LEVEL	70V			
DURATION	5 periods	5 periods		
PRETRIGGER	2 periods	2 periods		
STORE MODE	Continuous (max. 200 rec.)			

Abbildung 4-85: Einstellungen Transienten-Rekorder

Nachdem der WELLENFORM REKORDER eingerichtet wurde, können wir mit der Aufzeichnung fortfahren. Der Rekorder wird durch Drücken der Taste START (F1)

gestartet Ein gelbes Symbol in der Statusleiste ^U zeigt an, dass der Wellenform Rekorder aktiv ist und auf einen Trigger wartet. Sobald eine Trigger Bedingung auf einem Kanal erfüllt ist, beginnt das Prüfgerät mit der Aufzeichnung. Die aktive

Aufzeichnung wird in der Statusleiste mit einem roten Symbol angezeigt $oldsymbol{U}$.

TRANSIENT REC.	(]↓(15:10	TRANSIENT REC.: A	丁真二 15:17
TRIGGER	Envelope	•2500/div	
LEVEL	70V	230.0v	
DURATION	5 periods		XX
PRETRIGGER	2 periods	230.0v	
STORE MODE	Continuous (max. 200 rec.)	229.9v	
Available memory: 46790 re	ecords (3752MB)	5ms/div	
STOP TRIG	. SCOPE	TRIG. U I 1 2	3 N A SETUP

Abbildung 4-86: Einstellungen Transienten-Rekorder

Nachdem das Transienten Ereignis erfasst wurde, kann es im Menü "REKORDER → SPEICHERLISTE" angesehen werden, wie in den folgenden Abbildungen dargestellt.

MEMORY LIST	↓〔 15:02	TRANSIENT REC. L1	R [[] 15:02
Record No. 20	0/20	02.Jun.2015 14:43:13.720869	
FILE NAME	R0023TRA		
ТҮРЕ	TRANSIENT REC.	-235.6V	
TRIGGER	Envelope		
LEVEL	80V	-506.9A	
DURATION	5 periods		$\sqrt{f} = \sqrt{f} = \sqrt{f}$
START TIME	02.Jun.2015 14:43:13.720		ĭ í ĭ
SIZE	84.1kB	t: -0.000ms	
VIEW	CLEAR CLR ALL	U I U,I	U/I 1 2 3 N A ZOOM

Abbildung 4-87: Überwachung der Transienten Aufzeichnung am Prüfgerät

4.10.2 Herunterladen und beobachten aufgezeichneter Daten in PowerView

Aufgezeichnete Daten können zur weiteren Analyse in PowerView importiert werden Bitte beachten Sie, dass PowerView vor diesem Schritt, wie im Abschnitt 3.5 PowerView Installation und Einrichtung beschrieben, installiert und eingerichtet werden muss.

Öffnen Sie PowerView und klicken Sie auf die Schaltfläche "Herunterladen" in der Symbolleiste. Ein neues Fenster mit den Informationen zum Prüfgerät und der Liste der verfügbarer Aufzeichnungen wird angezeigt (siehe Abbildung unten). Wählen Sie die gewünschten Datensätze aus (die aktuelle Auswahl ist grün markiert) und klicken Sie dann auf die Schaltfläche "Import starten".

🖳 Import			↔_[×
	vnload Dialog this dialog, you can select individual records for download and define where you want to place them.			
	Start time: 2.6.2015 15:14:54,005 Stop time: 2.6.2015 15:14:54,105 File size: 0,08 MB	Download to: Create a new site>	•	-
	41. Transient Record, recorded on 2.6.2015 15:15:04, duration: 100 ms. File name: R0052TRA.REC Start time: 2.6.2015 15:15:04,022 Stop time: 2.6.2015 15:15:04,122 File size: 0,08 MB	Download to: <create a="" new="" site=""></create>	•	-
	42. Transient Record, recorded on 2.6.2015 15:15:14, duration: 100 ms. File name: R0053TRA.REC Start time: 2.6.2015 15:15:14,026 Stop time: 2.6.2015 15:15:14,126 File size: 0.08 MB	Download to: <create a="" new="" site=""></create>	•	
	43. Transient Record, recorded on 2.6.2015 15:15:24, duration: 100 ms. File name: R0054TRA.REC Start time: 2.6.2015 15:15:24,015 Stop time: 2.6.2015 15:15:24,115 File size: 0,08 MB	Download to: <create a="" new="" site=""></create>	•	-
	44. Transient Record, recorded on 2.6.2015 15:15:34, duration: 100 ms. File name: R0055TRA.REC Start time: 2.6.2015 15:15:34,028 Stop time: 2.6.2015 15:15:34,128 File size: 0.08 MB	Download to: <create a="" new="" site=""></create>	•	_
	45. Transient Record, recorded on 2.6.2015 15:15:44, duration: 100 ms. File name: R0056TRA.REC Start time: 2.6.2015 15:15:44,025 Stop time: 2.6.2015 15:15:44,125 File size: 0.08 MB	Download to: <pre>Create a new site></pre>	•	
	46. Transient Record, recorded on 2.6.2015 15:15:54, duration: 100 ms. File name: R0057TRA.REC Start time: 2.6.2015 15:15:54,015 Stop time: 2.6.2015 15:15:54,115 File size: 0,08 MB	Download to: <create a="" new="" site=""></create>	•	
	47. Transient Record, recorded on 2.6.2015 15:16:04, duration: 100 ms. File name: R0058TRA.REC Start time: 2.6.2015 15:16:04,026 Stop time: 2.6.2015 15:16:04,126 File size: 0,08 MB	Download to: <create a="" new="" site=""></create>	•	-
	48. Transient Record, recorded on 2.6.2015 15:16:14, duration: 100 ms. File name: R0059TRA.REC Start time: 2.6.2015 15:16:14,018 Stop time: 2.6.2015 15:16:14,118 File size: 0,08 MB	Download to: <create a="" new="" site=""></create>	•	•
☑ Select/Desel	set all Show records General Transient Snapshot Show records Waveform Transient Snapshot Mage of 2	Start importing	Cance	

Abbildung 4-88: Download Dialog

Nach dem Import wird die Registerkarte "Datensatz Information" angezeigt. Diese Registerkarte enthält grundlegende Informationen zum importierten Datensatz. Datensätze aus den Aufzeichnungen können über die Registerkarte "Daten Explorer" (auf der linken Seite) abgerufen werden. Wie aus der folgenden Abbildung ersichtlich, ist die Kondensatorbankumschaltung deutlich erkennbar. Bei Bedarf kann der Prüfer Probenwerte, RMS-Werte und Zeitstempel auswerten.

Abbildung 4-89: Transienten Diagramm Ansicht

4.11 Übung 11 – Phasenfehler (vertauschen)

Dieses praktische Beispiel reproduziert ein Ereignis, bei dem zwei Phasen während des Schaltens der Stromversorgung von einem Transformator zu einem anderen vertauscht werden. Während eines solchen Ereignisses kann ein übermäßiger Strom Inrush auftreten, der zu einer Abschaltung der Einspeisung führen kann.

Abbildung 4-90: Phasen Vertauschung

Um ein solches Ereignis zu simulieren, stellen Sie bitte den Schalter S10 im Application Trainer auf EIN, wie in der Tabelle unten gezeigt. Die übrigen Schalter müssen auf AUS gestellt sein. Der Application Trainer wechselt alle 10 Sekunden zwischen den Phasen L2 und L3.

Schalter	Beschreibung	Zustand
S10	Phasenausfall (Schalter)	

In der Praxis wissen wir normalerweise nicht, wo das Problem liegt, daher empfehlen wir, mit der Beobachtung von Spannung, Strom und THD zu beginnen. Dies kann durch öffnen des Menüs U, I, f im MENÜ MESSUNGEN erfolgen (siehe unten).

Abbildung 4-91: Echtzeitmessungen von Spannung und Strom

Da plötzliche Änderungen (wie wir es beobachten können) bei stetigen RMS-Messungen nicht sichtbar sind, besteht der nächste Schritt darin, minimale und maximale RMS-Werte für jede Phase zu überprüfen. Beachten Sie, dass vor dem Beobachten die Taste RESET (F2) gedrückt werden muss, um alle vorherigen Werte zu löschen. Wie aus der folgenden Abbildung zu ersehen ist, unterscheiden sich MAX- und MIN-Werte deutlich vom Durchschnittswert, was eindeutig zeigt, dass es sich um plötzliche Spannungsänderungen handelt (ähnlich wie bei Einbruch / Anstieg).

U,I,f:L1		(00:33
	U1	11
RMS	230.9	999.7A
THD	0.08%	0.07%
CF	1.42	Compare 1.41
PEAK	326.7v	1414
MAX	249.4	1196A
MIN	<u>(162.89</u>)	898.1 _A
f	49.996Hz]
HOLD		A A SCOPE

Abbildung 4-92: Halbzyklus minimale und maximale Spannungswerte

In solchen Fällen ist es am besten zu versuchen, Störungen mit einem Wellenform-Rekorder zu erfassen. Unten ist ein WELLENFORM EINRICHTEN Bildschirm, der entsprechend der gemessenen Mindestspannung aus der vorherigen Abbildung eingerichtet wurde.

WAVEFORM RE	EC.		Į 🛄 13:2	
TRIGGER	Le	vel U		
LEVEL	85	.0% (195.5∨)		
SLOPE	Fa	11		
DURATION	5 9	5 s		
PRETRIGGER	2 9	2 s		
STORE MODE	Co	Continuous (max. 200 rec.)		
Available memory:	8792 record	s (3745MB)		
START	HELP	CONFIG	CHECK C.	

Abbildung 4-93: Wellenform Rekorder Parametereinstellungen

Nachdem der WELLENFORM REKORDER korrekt eingerichtet wurde, drücken Sie die START Taste (Taste F1). Die Phasenumschaltung sollte innerhalb von 10 Sekunden erfolgen. Während der Phasenumschaltung wird die RMS Spannung geändert, wodurch der Wellenform Rekorder ausgelöst wird. Die erfasste Wellenform, in der Störungen zu sehen sind, kann in der folgenden Abbildung angesehen werden, Indem wir die Wellenform genau ansehen, können wir feststellen, dass die Wellenform vor und nach der Störung nicht gleich ist. Dies zeigt, dass wir ein problematisches Schaltereignis haben, bei dem die Phasensequenz

geändert wird.

Abbildung 4-94: Phasenschaltereignis am Prüfgerät ansehen

Die erfasste Wellenform kann auf den PC heruntergeladen und auf dem PC überwacht werden, wie in der Abbildung unten dargestellt.

Abbildung 4-95: Phasenschaltereignis in PowerView ansehen
4.12 Übung 12 – Falsche Prüfgeräte Verbindung

Diese praktische Übung soll zeigen wie wichtig der richtige Anschluss des Prüfgeräts ist. Manchmal ist es nicht möglich festzustellen, welcher Strom zu welcher Spannung gehört, was zu falschem Prüfgeräteanschluss und fehlerhaften Messungen führen kann. Da es keine nachträgliche Lösung für falsch angeschlossene Prüfgeräte gibt, ist es sehr wichtig, dass das Prüfgerät korrekt angeschlossen ist.

In der folgenden Übung vertauscht der Application Trainer einige Strom- und Spannungskanäle, und der Prüfer muss herausfinden, welche Leitungen vertauscht sind und wie das Prüfgerät korrekt angeschlossen wird. Stellen Sie die Schalter S1 ÷ S11 des Application Trainers so ein, wie in der Tabelle unten gezeigt.

Abbildung 4-96: Falsche Prüfgeräteverbindung

Um dieses Problem zu lösen, drücken Sie den Button und wählen Sie in der Menüzeile Verbindungsprüfung. Der folgende Bildschirm wird angezeigt:

Connec	tion: Consum	ţ(16:01	
	L1	L2	L3	
U	√ 229.3	/ 230.6	/ 229.9	v
I	\$ 999.6	1002 🏑	/ 997.5	Α
Р	-114.8	-115.5	-114.8	kW
Phase	<mark>×</mark> 120.0	<mark>×</mark> 120.0	<mark>×</mark> 120.0	•
Useq	× 3 2 1	Ptot	-345.1	ĸ₩
lseq	X321	f	49.996	Hz
DATE/TIME VIEW LIMITS				

Abbildung 4-97: Bildschirm Verbindungsprüfung (falsche Strom- und Spannungsreihenfolge)

Hier kann der Prüfer Spannung, Strom, Leistung, Frequenz und weitere Werte zusammen mit Phasenwinkel und Sequenz überprüfen. Alle Messungen werden nach einigen logischen Grenzen überprüft und der Status wird wie mit einem OK (\checkmark) oder Fail (\checkmark) Zeichen angegeben. Zum Beispiel: Wenn wir einen Motor oder eine andere Art von Last (die Energie verbraucht) überwachen, sollte der Phasenwinkel zwischen Spannung und Strom weniger als 90 Grad betragen. In unserem Fall ist die Phasenverschiebung zwischen Spannung und Nachbarstrom mehr als 90 Grad, was deutlich zeigt, dass das Prüfgerät falsch angeschlossen ist.

Durch den Austausch der Spannungsprüfspitzen L1 und L2 am Prüfgerät erhalten wir eine ordnungsgemäße Spannungsverbindung, wie in der folgenden Abbildung gezeigt.

Connec	tion: Consum	ţ(] 16:0	
	L1	L2	L3	
U	🖌 230.6	/ 229.3	/ 229.9	v
I	√ 999.6	1002 🏑	/ 997.4	A
Р	230.6	-114.7	-114.8	kW
Phase	/ 0.0	<mark>×</mark> 240.0	<mark>×</mark> 120.0	•
Useq	123	Ptot	1.117	ĸw
lseq	X321	f	49.996	Hz

Abbildung 4-98: Bildschirm Verbindungsprüfung (korrekte Spannungsreihenfolge)

Aus der Abbildung oben können wir sehen, dass die Phasenwinkel auf den Kanälen L2 und L3 und die aktuelle Reihenfolge nicht korrekt sind. Insbesondere die Ströme I2 und I3 weisen große Phasenverschiebungen zu benachbarten Spannungen auf. Indem wir sie vertauschen, erhalten wir eine korrekte Verbindung, wie in der folgenden Abbildung gezeigt.

Connection: Consumed			ţ(] 16:1
	L1	L2	(L3)	
U	√ 230.6	/ 229.3	/ 229.9	v
I	√ 999.7	/ 997.4	1002 🎸	Α
Р	230.6	228.7	230.3	kW
Phase	🧹 0.0	🧹 0.1	🧹 0.0	•
Useq	123	Ptot	689.6	ĸw
lseq	123	f	4 9.996	Hz

Abbildung 4-99: Bildschirm Verbindungsprüfung (korrekte Spannung und Stromreihenfolge)

5 Checkliste

Bevor Sie das Prüfgerät am Standort für die Aufzeichnung verlassen, gehen Sie bitte die folgende Checkliste durch:

	INSTRUMENT SETUP						
1	Batteries installed and charged						
2	microSD card installed						
3	Time and date correctly set (UTC GPS or RTC)						
	CONNECTION						
1	AC adapter connected						
2	Voltage leads connected						
3	Current clamp sensors connected						
4	Appropriate current sensors and optimal current range selected						
5	Appropriate connection type selected						
6	Appropriate synchronization type (U/I) selected						
	RECORDER SETUP						
1	Appropriate recorder (depending on the application) selected						
	General recorder (enables periodic recording)						
	Waveform recorder (enables waveforms recording) Single or Continuous						
	Transient recorder (enables high resolution waveforms recording) Single or Continuous						
	SETUP OF WAVEFORM TRIGGERS						
1	Appropriate waveform recorder (depending on the application) selected						
	Trigger set to Voltage events / Troubleshooting						
	Trigger set to Level on Voltage or Current / Inrush recorder						
	Trigger set to Interval						
	Trigger set to Alarm / Troubleshooting						
	START OF RECORDING SESION						
1	Check that appropriate symbols are displayed on the screen						
	General recorder						
	Waveform recorder						
	Transient recorder						
	Ethernet Communication						

AD 3 – MI 3399 GT Geräte & Maschinen Sicherheits Trainer

INHALTSVERZEICHNIS

1	Einf	۲۶۲ aführung		
2	Sich	Sicherheitswarnungen		
3	Bes	chreibung	227	
	3.1	Vorderseite		
	3.2	Beschreibung der Simulationsfläche		
4	Gru	ndlegende Theorie		
-	4.1	Sicherheitsmanagement		
	4.2	Klassifizierung von Geräten (nach Finsatzbereich)	230	
	4.3	Klassifizierung von Geräten (nach Schutzklassen)	231	
	4.0 //	Tragharo oloktrischo Goräto – Mossungon		
	4.4.1	Sichtprüfung		
	4.4.2	Prüfung der Erdverbindung (Durchgang, Schutzleiter)		
	4.4.3	Isolation	235	
	4.4.4	Ersatzableitstromprüfung		
	4.4.5	Ableitstromprüfungen - Allgemeines		
	4.4.6	Schutzleiterableitströmprufung		
	4.4.8	Berührungsableitstromprüfung		
	4.4.9	Polaritätsprüfung		
	4.4.1	0 Last- und Ableitstrommessungen (Messungen mit Stromzangen)		
	4.4.1	1 Funktionsprüfung		
	4.4.1	2 PRCD Prüfung		
	4.4.1	3 Aktive Polaritätsprüfung		
	4.5	Prüfung der Sicherheit von Maschinen und Schaltanlagen	252	
	4.5.1	Erfahren Sie mehr über die Sicherheit von Maschinen	252	
	4.5.2	Uberprüfung der Sicherheit von Maschinen		
	4.5.3	Sicherheit - Messungen		
	4. 4	5.3.2 Schleifenimnedanz und Kurzschlussstrom	255 254	
	4.	5.3.3 RCD Prüfung		
	4.	5.3.4 Entladezeit	255	
	4.	5.3.5 Funktionsprüfung	255	
5	Info	rmationen zu den Demonstrationstafeln	256	
	5.1	Allgemeine Anmerkungen:	256	
	5.2	Tragbares Gerät der Klasse 1 (Bügeleisen)	257	
	5.3	Tragbares Gerät der Klasse II – Radioempfänger	258	
	5.4	5.4 IEC-Kabel		
	5.5 Tragbares Gerät der Klasse 1 (Kabeltrommel)		260	
	5.6	Tragbares Gerät der Klasse 1 (Kaffeemaschine)	261	
5.7 Bewegliches Gerät der Klasse 1 (Waschmaschine)		262		
5.8 Elektrische Maschine		Elektrische Maschine		

	5.9	Niederspannungsschalteinrichtung	264
6	Spe	ezifikationen	265
	6.1	Technische Daten	
	6.2	Inhalt des Satzes PAT Demoboard (Bestellnummer MI 3300)	

ABBILDUNGSSVERZEICHNIS:

Abbildung 1-1: Sicherheitsmanagement	.230
Abbildung 1-2: Prüfung der Erdverbindung	.233
Abbildung 1-3: Beispiele für Fehler der Schutzleiterverbindung	.234
Abbildung 1-4: Prüfung der Erdverbindung	.234
Abbildung 1-5: Isolationsprüfung an einem Gerät der Klasse I	.235
Abbildung 1-6: Isolationsprüfung an einem Gerät der Klasse II	.235
Abbildung 1-7: Beispiele für Isolationsfehler	.236
Abbildung 1-8: Beispiel der Isolationsprüfung an einem Gerät der Klasse I	.236
Abbildung 1-9: Beispiel der Isolationsprüfung an einem Gerät der Klasse II	.237
Abbildung 1-10: Ersatzableitstromprüfung an einem Gerät der Klasse I	.238
Abbildung 1-11: Ersatzableitstromprüfung an einem Gerät der Klasse II	.238
Abbildung 1-12: Beispiele zu hoher Ableitströme	.239
Abbildung 1-13: Beispiel der Ersatzableitstromprüfung an einem Gerät der Klasse I.	.239
Abbildung 1-14: Beispiel der Ersatzableitstromprüfung an einem Gerät der Klasse II.	.240
Abbildung 1-15: Schutzleiterableitstromprüfung für Gerät der Klasse I	.241
Abbildung 1-16: Beispiel für die Prüfung des Schutzleiterstroms	.241
Abbildung 1-17: Differenzableitstromprüfung für Gerät der Klasse I	.242
Abbildung 1-18: Beispiel für Differenzableitstromprüfung	.243
Abbildung 1-19: Berührungsableitstromprüfung für Gerät der Klasse II	.244
Abbildung 1-20: Beispiel einer zu hohen Berührungsspannung	.244
Abbildung 1-21: Beispiel einer zu hohen Berührungsspannung	.245
Abbildung 1-22: Polaritätsprüfung	.246
Abbildung 1-23: Leiterfehler – Polarität	.246
Abbildung 1-24: Beispiel der Polaritätsprüfung	.247
Abbildung 1-25: Strommessungen Stromzangen	.247
Abbildung 1-26: Funktions- und Ableitstromprobleme	.248
Abbildung 1-27: Beispiele für Prüfungen mit Stromzangen	.249
Abbildung 1-28: Funktionsprüfung	.250
Abbildung 1-29: Beispiel für Funktionsprüfungen	.250
Abbildung 1-30: PRCD Prüfung	.251
Abbildung 1-31: PRCD Prüfung	.251
Abbildung 1-32: Aktive Polaritätsprüfung	.252
Abbildung 1-33: Hochspannungsprüfung	.253
Abbildung 1-34: Schleifenimpedanz Prüfung	.254
Abbildung 1-35: Prüfen eines RCD in einer RCD geschützten Maschine	.254
Abbildung 1-36: Prüfung eines RCD in der Elektroinstallation	.255
Abbildung 1-37: Entladungszeitprüfung	.255

TABELLENVERZEICHNIS:

Abbildung 1-1: Sicherheitsmanagement	230
Tabelle 11: Klassifizierung von Geräten	231
Tabelle 5.1: Beschreibung der simulierten Fehler / zugehörigen Tests	257
Tabelle 5.2: Beschreibung der simulierten Fehler / zugehörigen Tests	258
Tabelle 5.3: Beschreibung der simulierten Fehler / zugehörigen Tests	259
Tabelle 5.4: Beschreibung der simulierten Fehler / zugehörigen Tests	260
Tabelle 5.5: Beschreibung der simulierten Fehler / zugehörigen Tests	261
Tabelle 5.6: Beschreibung der simulierten Fehler / zugehörigen Tests	262
Tabelle 5.7: Beschreibung der simulierten Fehler / zugehörigen Tests	263
Tabelle 5.8: Beschreibung der simulierten Fehler / zugehörigen Tests	264

1 Einführung

Das PAT Demoboard ist für die Demonstration der Sicherheitsüberwachung elektrischer Einrichtungen bestimmt. Typische Anwendungen sind:

- Vorführung der Sicherheitsüberwachung elektrischer Einrichtungen in Seminaren, Kursen.
- Darstellung typischer Sicherheitsprobleme bei elektrischen Einrichtungen.
- Praktische Vorführung von Messgeräten (Durchführung von Prüfungen, Herstellung korrekter Verbindungen, Analyse von Messergebnissen).

Es können verschiedene Werte elektrischer Parameter simuliert werden, die gewöhnlich während eines Sicherheitstests elektrischer Einrichtungen geprüft werden. Fehlerzustände können ein- oder ausgeschaltet werden.

Die folgenden elektrischen Parameter können simuliert werden:

- Durchgangsprüfung von Verbindungen gleichen Potentials
- Isolationswiderstand
- Leckstrom
- Berührungs-Leckstrom
- Polarität von Kabeln
- Betriebsfunktionen

Eine praktisch unbegrenzte Anzahl von verschiedenen Einrichtungen (tragbare und Handgeräte, Maschinen, Schalteinrichtungen) kann durch Verwenden unterschiedlicher Demonstrationstafeln simuliert werden. Im Standardsatz sind acht Tafeln enthalten.

Auf Anfrage kann das PAT Demoboard einfach durch neue Demonstrationstafeln (Sonderanwendungen, landesspezifische Ausführung usw.) erweitert werden. Wenden Sie sich dazu an METREL oder Ihren örtlichen Händler.

2 Sicherheitswarnungen

$\underline{\mathbb{M}}$

- Nur qualifiziertes Personal, das mit der Demonstrationstafel und den Messgeräten vertraut ist, darf das PAT Demoboard benutzen!
- Verwenden Sie nur vom Hersteller stammende Original-Demonstrationstafeln!
- Das PAT Demoboard muss als wirkliche elektrische Einrichtung betrachtet werden. Die simulierten Fehler sind Wirklichkeit. Obwohl die simulierten Leckströme auf relativ niedrigem Niveau gehalten werden, ist es streng verboten, während der Demonstration irgendwelche erreichbaren Metallteile innerhalb der Simulationsfläche zu berühren.
- Das PAT Demoboard funktioniert nur, wenn es an eine ordnungsgemäß geerdete TN- oder TT-Steckdose angeschlossen ist. Für den Normalbetrieb des Demoboards muss die Kontrollleuchte "Bereit" grün leuchten. Wenn das rote Licht blinkt und der Summer ertönt, trennen Sie das Demoboard sofort vom Netz und überprüfen Sie die Versorgungsanschlüsse!
- Besondere Vorsicht ist bei der Durchführung von Hochspannungs-(Spannungsfestigkeits-)Tests angebracht. Alle Sicherheitsmaßnahmen müssen so behandelt werden, als würde eine wirkliche elektrische Einrichtung geprüft.
- Prüfen Sie immer, ob der Strom der Hochspannungsprüfeinrichtung auf ein niedriges Niveau (< 3,5 mA) begrenzt ist, wenn am PAT Demoboard Spannungsfestigkeitstests durchgeführt werden.
- Wenn das Gerät nicht so benutzt wird, wie vom Hersteller angegeben, kann der Schutz, den das Gerät bietet, beeinträchtigt werden.
- Die Verwendung der Demonstrationstafel in einer Weise, die nicht in dieser Benutzeranleitung angegeben ist, könnte das Gerät beschädigen.
- Benutzen Sie die Demonstrationstafel niemals, wenn eine Beschädigung zu erkennen ist!
- Nur eine zugelassene Person darf eine Wartung an der Demonstrationstafel durchführen!

3 Beschreibung

3.1 Vorderseite

- 1. Netzanschluss zur Versorgung des Demoboards.
- 2. Daten des Demoboards.
- 3. Deckelhalter.
- 4. RS232-Anschluss (im Normalbetrieb des PAT Demoboards nicht verwendet).
- 5. Simulationsfläche für elektrische Einrichtungen.
- 6. Aussparung zum Einsetzen von Demonstrationstafeln.
- 7. Frontplatte.
- 8. Herstellerschild.
- 9. Bereitschaftsanzeige:

Rotes Licht – Demoboard ist nicht bereit.

Blinkendes rotes Licht, Summer ertönt – falscher Netzanschluss.

Grünes Licht – Demoboard ist bereit für die Demonstration.

10. Fehlerschalter:

Rotes Licht ist an – Simulation eines Fehlers ist eingeschaltet. Rotes Licht ist aus – Simulation eines Fehlers ist ausgeschaltet.

3.2 Beschreibung der Simulationsfläche

- 1. Zugängliches isoliertes Metallteil.
- 2. Geerdete Metallteile Nr. 1 und 2.
- 3. Kontrollleuchte "Eingeschaltet"
- 4. EIN-/AUS-Schalter
- 5. Anschlussbuchsen für die Simulation verschiedener fester Anschlüsse.
- 6. Netzanschluss Klasse II.
- 7. Anschluss für die Simulation von IEC-Anschlusskabeln.
- 8. Geerdetes Metallteil Nr. 3.
- 9. Geerdetes Metallteil Nr. 4.
- 10. Netzanschluss Klasse I.

4 Grundlegende Theorie

Das Hauptziel der Sicherheitsprüfung elektrischer Geräte ist die gefahrlose Verwendung aller elektrischen Geräte. Häufige, durch elektrische Geräte verursachte Unfälle sind:

- Verletzungen durch elektrischen Schlag infolge der Fehlfunktion eines Gerätes
- Verletzungen durch überhitzte Geräte
- Brände und Explosionen

Zur Vermeidung von Risiken und möglichen Gefahren, die durch den Gebrauch von Elektrogeräten und anderen Geräten verursacht werden, muss ein geeignetes Sicherheitsprüfverfahren durchgeführt werden.

Das Prüfen elektrischer Geräte ist nicht in allen Ländern auf dieselbe Weise geregelt.

Die Sicherheit elektrischer Geräte hängt von verschiedenen Faktoren ab, die das Sicherheitsniveau verbessern oder verschlechtern können.

Nach den Normen werden elektrische Betriebsmittel unterteilt in:

- Elektrische Geräte.
- Elektrische Geräte für den medizinischen Gebrauch.
- Elektrische Maschinen.
- Elektrische Schalteinrichtungen.

Arten von Sicherheitsprüfungen elektrischer Geräten sind:

- Typprüfung.
- Fertigungsendprüfung.
- Wartungsprüfung.
- Prüfen nach Modifikation und Reparatur.
- Periodische Prüfung

4.1 Sicherheitsmanagement

Der Begriff "Sicherheitsmanagement" fasst alle notwendigen Schritte zusammen, die unternommen werden müssen, um die Sicherheit eines elektrischen Geräts während seiner gesamten Lebenszeit sicherzustellen.

Diese Schritte sind:

- Qualitäts Typprüfung vom Hersteller durchgeführt
- Erlangung eines unabhängigen Zertifizierungszeichens für das Produkt (empfohlen)
- Eine strenge Qualitäts-Endkontrolle beim Hersteller
- Qualitätswartung des Produkts
- Korrekter Umgang mit dem Produkt gemäß Produkthandbüchern und Arbeitsanweisungen
- Häufige Sichtprüfung durch den Benutzer
- Regelmäßige, durch eine geschulte Person durchgeführte Sicherheitsüberprüfung (Sichtprüfung, Sicherheitsprüfung, "Logbuch" des Geräts, Dokumentation der Prüfungen usw.)

• Geeignete Abhilfemaßnahmen im Falle eines bekannt gewordenen Sicherheitsproblems. Das nachstehende Bild zeigt, wie einzelne Faktoren das Sicherheitsniveau eines elektrischen Geräts verbessern / verschlechtern können.

Abbildung 4-1: Sicherheitsmanagement

4.2 Klassifizierung von Geräten (nach Einsatzbereich)

Typische Geräte sind:

- Laboreinrichtungen.
- Mess- und Regeleinrichtungen.
- Stromversorgungen.
- Heizgeräte.
- Elektrische Handwerkzeuge.
- Leuchten.
- Unterhaltungselektronik.
- Informations- und Kommunikationstechnik (Computer, Faxgeräte, Scanner usw.)
- Verlängerungskabel, IEC-Netzkabel
- Geräte für den medizinischen Gebrauch

Vor dem Prüfen muss der Anwender die Bauart des Gerätes kennen, z. B. die Schutzklasse.

4.3 Klassifizierung von Geräten (nach Schutzklassen)

Je nach Konstruktion können elektrische Geräte in drei Klassen unterteilt werden. In der nachstehenden Tabelle werden die Unterschiede zwischen den Klassen beschrieben.

Klasse	Ι	II	III
Kennzeichnung	keine		
Verbindung zum	Ja.	Nr.	Keine Verbindung mit dem Netz
Schutzleiter	Alle berührbaren		
(PE) der Anlage	Metallteile (Gehäuse		
	usw.) sind mit dem		
	verbunden		
Basisisolierung	ausgeführt	ausgeführt	ausgeführt / freiere
Busicicontraing			Grenzwerte
Zusätzliche	Im Allgemeinen nicht	ausgeführt	nicht erforderlich
Isolierung oder	nötig;		
verstärkte	Nötig, wenn		
Isolierung	berührbare		
	ungeerdete Metallteile		
	vorhanden sind ¹¹ .		
Netzkabel	dreipolig (L, N, PE)	kann zweipolig sein	zweipolig
Hinweise	Anlage muss		Muss über eine SELV-
	Erdungswiderstand		"Schutzkieinspannung")
			typischorwoise 12 V eder
			24 V

Tabelle 4.-1: Klassifizierung von Geräten

4.4 Tragbare elektrische Geräte – Messungen

Grundlegende Prüfung, die durchgeführt werden muss, während das tragbare Gerät ausgeschaltet ist:

- 1. Sichtprüfung
- 2. Erdverbindung / Schutzleiterwiderstand
- 3. Isolationswiderstand (mit oder ohne Prüfspitze)
- 4. Ersatzableitstrom (optional)

Wenn alle durchgeführten Prüfungen bestanden wurden, sollte das tragbare Gerät eingeschaltet, und die folgenden Prüfungen durchgeführt werden:

- 1. Ableitstrom (Differenzmessung oder Berührung)
- 2. Polarität
- 3. PRCD

¹¹ 1) Geräte der Klasse I können mit Sicherheitsmaßnahmen der Klasse II kombiniert werden!

4. Funktionsprüfung

Die Prüfung mit Prüfspitze wird an Geräten der Klasse II (Bügeleisen, Radio mit externer Antenne...) durchgeführt.

4.4.1 Sichtprüfung

Die Sichtprüfung des Gerätes soll zeigen, dass keine sichtbaren Schäden oder Mängel vorhanden sind. Die elektrische Prüfung deckt oft Fehler nicht auf, die bei der Sichtprüfung offensichtlich werden. Die Sichtprüfung deckt die meisten Fehler auf! Vor jeder elektrischen Sicherheitsprüfung muss eine gründliche Sichtprüfung durchgeführt werden.

Umfang der Prüfung:

Folgende Punkte sollten überprüft werden:

- Sichtprüfung der Geräte auf Anzeichen von Beschädigungen.
- Sichtprüfung des Netzkabels auf Beschädigungen.
- Alle Anzeichen von Verunreinigung, Feuchtigkeit, Schmutz, die die Sicherheit gefährden können. Insbesondere Öffnungen, Luftfilter, Schutzabdeckungen und Absperrungen müssen überprüft werden.
- Gibt es Anzeichen von Korrosion?
- Gibt es Anzeichen von Überhitzung?
- Beschriftungen und Markierungen bezüglich der Sicherheit müssen klar lesbar sein.
- Die Installation des Geräts muss gemäß der Bedienungsanleitung erfolgen.
- Während der Sichtprüfung müssen auch die Messpunkte für die elektrische Prüfung bestimmt werden.

Hinweis: Für Geräte der Klassen II und III ist die Sichtprüfung oft die einzige anwendbare Sicherheitsprüfung!

4.4.2 Prüfung der Erdverbindung (Durchgang, Schutzleiter)

Umfang der Prüfung:

Bei der Prüfung der Erdverbindung wird Folgendes ermittelt:

- Dass die Kontakte zwischen berührbaren Metallteilen und dem Schutzleiter fest sind,
- Dass die Schutzleiterader im Netzkabel unbeschädigt ist,
- Dass es keine Anzeichen von schlechten Kontakten, Korrosion usw. gibt.

Abbildung 4-2: Prüfung der Erdverbindung

Beispiele für Fehler und mögliche Folgen

Fehler: Berührbares Metallteil war nach Reparatur nicht mit dem Schutzleiter verbunden.

Ergebnis: Eine gefährliche Berührungsspannung trat an dem nicht verbundenen berührbaren Metallteil auf. Es besteht die Gefahr eines elektrischen Schlags, wenn man dieses Teil berührt. In diesem Fall würde der Ableitstrom durch den Körper statt durch den Schutzleiter nach Erde abfließen.

Fehler: Der Schutzleiter in der Netzschnur ist gebrochen.

Ergebnis: Es gibt keinen Pfad zur Erde für Fehlerströme. Wieder würde der Ableitstrom durch den Körper statt durch den Schutzleiter nach Erde abfließen, wenn man das Gehäuse berührt. Das ist besonders gefährlich bei einem Fehler eines spannungsführenden Leiters zur Masse (z. B. Isolationsfehler) in dem Gerät, da Spannung am Gehäuse anliegen kann.

Abbildung 4-3: Beispiele für Fehler der Schutzleiterverbindung

Messprinzip / Grenzwerte

Abbildung 4-4: Prüfung der Erdverbindung

Das Prüfsignal wird zwischen dem Schutzleiterkontakt des Versorgungskabels und den zugänglichen leitfähigen Teilen, die mit dem Schutzleiter verbunden sind, angelegt.

Hinweise:

- Flexible Netzleitungen müssen während der Prüfung aufgewickelt sein! Wenn sich das Ergebnis während der Messung ändert, bedeutet dies, dass die Prüfung nicht bestanden wurde.
- Es sollte auf einen guten Kontakt zwischen der Sonde und den Metallteilen geachtet werden. Insbesondere dann, wenn Ergebnisse unter 0,3 Ω erwartet werden, könnte das Ergebnis durch den Kotaktwiderstand beeinflusst werden.
- Einige (IT-) Geräte haben möglicherweise berührbare Metallteile, die nur zu Abschirmzwecken geerdet sind. Diese nicht der Sicherheit dienenden Teile werden nicht der Prüfung der Erdverbindung unterworfen. Solche Verbindungen können mit niedrigen Strömen (100 mA, 200 mA) überprüft werden.

 Die galvanische Trennung des Messkreises wird bevorzugt (vorgeschrieben f
ür VDE-Pr
üfungen). Andernfalls k
önnen zus
ätzliche Strompfade zur Erde auftreten (durch unisolierten Fu
ßboden, andere Erdverbindungen wie EMV-Schirme usw.). Das kann zu niedrige Messwerte zur Folge haben.

4.4.3 Isolation

Umfang der Prüfung

Es wird der Isolationswiderstand zwischen spannungsführenden Leitern und allen berührbaren Metallteilen (geerdet und isoliert) geprüft. Diese Prüfung deckt Fehler auf, die durch Verschmutzung, Feuchtigkeit, Verschlechterung des Isolationsmaterials usw. verursacht werden.

Abbildung 4-5: Isolationsprüfung an einem Gerät der Klasse I

Der kapazitive Teil der Ableitströme wird aufgrund der Prüfgleichspannung nicht mitgemessen.

Das DC-Hochspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem Schutzleiterkontakt (PE) der Netzleitung angelegt. Ungeerdete berührbare Metallteile werden NICHT in diese Prüfung einbezogen, und werden als Elemente der Klasse II gemessen.

Abbildung 4-6: Isolationsprüfung an einem Gerät der Klasse II

Das DC-Hochspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem Schutzleiterkontakt (PE) der Netzleitung angelegt.

Beispiele für Fehler

Fehler: Verringerter Isolationswiderstand zwischen spannungsführenden Leitern und einem berührbaren Metallteil. Typische Ursachen sind Schmutz, Staub und Feuchtigkeit. Schlitze und Öffnungen im Gehäuse sind besonders kritisch.

Ergebnis: Gefährliche Berührungsspannung an zugänglichen leitfähigen Teilen, die nicht mit der Schutzschaltung verbunden sind. Es besteht die Gefahr eines elektrischen Schlags, wenn man dieses Teil berührt.

Fehler: Verschlechterte Isolierung zwischen spannungsführenden Teilen und einem geerdeten Metallteil in dem Gerät.

Ergebnis: Zu hoher Ableitstrom, Auslösen von RCDs, Funkenbildung, Überhitzen des Geräts.

Abbildung 4-7: Beispiele für Isolationsfehler

Messprinzip / Grenzwerte: Messung an einem Gerät der Klasse I:

Abbildung 4-8: Beispiel der Isolationsprüfung an einem Gerät der Klasse I

Das DC-Hochspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem Schutzleiterkontakt (PE) der Netzleitung angelegt. Ungeerdete berührbare Metallteile werden NICHT in diese Prüfung einbezogen, und werden als Elemente der Klasse II gemessen.

Messung an einem Gerät der Klasse II:

Abbildung 4-9: Beispiel der Isolationsprüfung an einem Gerät der Klasse II

Das DC-Hochspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und zugänglichen leitfähigen Teilen angelegt, die von der Schutzschaltung getrennt sind. Jedes zugängliche, leitfähige Teil muss separat geprüft werden.

Hinweise:

- Ein-/Ausschalter müssen geschlossen sein. Wenn nach dem Schließen der Schalter nicht alle sicherheitsrelevanten Teile erfasst werden, sind die Ergebnisse beeinträchtigt. Dies ist oft der Fall in elektronisch oder über Relais angetriebenen Ein/Aus-Schaltungen. In diesem Fall können als Alternative Ableitstromprüfungen durchgeführt werden.
- Diese Prüfung kann nicht bei Geräten der Klasse II ohne berührbare Metallteile angewandt werden.
- Die Ersatzableitstromprüfung wird auch nach der Isolationsprüfung empfohlen.
- Die Prüfspannung wird normalerweise in der gleichen Höhe wie die maximal mögliche Versorgungsspannung gewählt.
- IT-Geräte, die nicht gemäß EN 60950 entsprechen, können durch die Prüfspannung von 500 V beschädigt werden.

4.4.4 Ersatzableitstromprüfung

Umfang der Prüfung

Mit dieser Prüfung wird die Gesamtimpedanz zwischen spannungsführenden Leitern und allen berührbaren Metallteilen (geerdet und isoliert) geprüft. Auch kapazitive Ableitstrompfade (Eingangsfilterkondensatoren, Transformatoren) gehen in das Ergebnis ein.

Bei dieser Prüfung werden die Phasen und Neutralleiter des Geräts kurzgeschlossen und eine Spannung von 30 - 50 V AC wird zwischen diesem Punkt und entweder dem Schutzleiter (Klasse I) oder der Prüfspitze an einem freiliegenden leitenden Teil (Klasse I und Klasse II) angelegt Bei dieser Prüfung wird gemessen, wie viel Strom von den stromführenden Leitern in den Prüfpunkt gelangt.

Abbildung 4-10: Ersatzableitstromprüfung an einem Gerät der Klasse I

Das Wechselspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem Schutzleiterkontakt (PE) der Netzleitung angelegt. Isolierte berührbare Metallteile werden NICHT in diese Prüfung einbezogen und werden als Objekte der Klasse II gemessen.

Abbildung 4-11: Ersatzableitstromprüfung an einem Gerät der Klasse II

Das Wechselspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem berührbaren isolierten Metallteil angelegt

Beispiele für Fehler

Fehler: Verringerter Isolationswiderstand zwischen spannungsführenden Teilen und einem isolierten berührbaren Metallteil, verursacht durch Schmutz, Feuchtigkeit usw. **Ergebnis:** Gefährliche Berührungsspannung am berührbaren isolierten Metallteil. Es besteht die Gefahr eines elektrischen Schlags, wenn man dieses Teil berührt.

Fehler: Wenn sich die Isolation im Gerät zwischen spannungsführenden und geerdeten Teilen verschlechtert, kann sich der Gesamtableitstrom über den Ableitstromgrenzwert hinaus erhöhen.

Ergebnis: Zu hohe Ableitströme führen zum Auslösen von RCDs Schlechte Isolation kann zu Funkenbildung und örtlicher Überhitzung des Geräts führen. Das ist besonders gefährlich im Falle schlechter Erdung des Geräts.

Abbildung 4-12: Beispiele zu hoher Ableitströme

Messprinzip / Grenzwerte Messung an einem Gerät der Klasse I:

Abbildung 4-13: Beispiel der Ersatzableitstromprüfung an einem Gerät der Klasse I

Das Wechselspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem Schutzleiterkontakt (PE) der Netzleitung angelegt. Berührbare leitende Teile, die nicht an die Schutzschaltung angeschlossen sind, sind in diesem Test NICHT enthalten und werden als Klasse II-Elemente gemessen.

Messung an einem Gerät der Klasse II:

Abbildung 4-14: Beispiel der Ersatzableitstromprüfung an einem Gerät der Klasse II

Das Wechselspannungsprüfsignal wird zwischen den miteinander verbundenen stromführenden Kontakten und dem berührbaren leitfähigen Teilen angelegt, die nicht mit der Schutzschaltung verbunden sind. Jedes zugängliche, leitfähige Teil muss separat geprüft werden.

Hinweise:

- Ein-/Ausschalter müssen geschlossen sein. Wenn nach dem Schließen der Schalter nicht alle sicherheitsrelevanten Teile erfasst werden, sind die Ergebnisse beeinträchtigt. Dies ist oft der Fall in elektronisch oder über Relais angetriebenen Ein/Aus-Schaltungen. In diesem Fall oder im Zweifel können als Alternative Ableitstromprüfungen durchgeführt werden.
- Diese Prüfung kann nicht bei Geräten der Klasse II ohne berührbare Metallteile angewandt werden.
- Geräte mit Ableitströmen >3,5 mA sollten gekennzeichnet werden.
- Diese Messung liefert ähnliche Ergebnisse wie die Ableitstromprüfung bei eingeschalteten Geräten. Das Ersatzableitstromergebnis ist aufgrund der miteinander verbundenen Leiter L und N gewöhnlich höher (bis zum Doppelten).
- Die Ersatzableitstromprüfung ist für IT-Geräte geeignet. (Bei angeschlossener Netzspannung muss die Prüfung länger dauern, um das Hochfahren des Geräts zu erlauben..)

4.4.5 Ableitstromprüfungen - Allgemeines

Umfang der Prüfung

Bei dieser Prüfung wird die Summe der Ableitströme überprüft, die durch Isolationswiderstände (resistive Ströme durch das Isolationsmaterial, Fehlerströme durch degradierte Isolation) und Kapazitäten (kapazitive Ableitströme) des Geräts verursacht werden. Selbst Ableitströme im mA-Bereich sind gefährlich. Die Gefahr erhöht sich, wenn die Installation nicht korrekt geerdet ist.

Zu hohe Ableitströme werden meistens durch Verschlechterung der Isolation des Geräts (Verschmutzung, Alterung, Feuchtigkeit) oder Fehler im Netzkreis von Geräten verursacht.

Im Allgemeinen werden drei Ableitströme gemessen: der Differenzstrom, der Schutzleiterableitstrom (direkt) und der Berührungsableitstrom.

4.4.6 Schutzleiterableitstromprüfung

Diese Prüfung wird manchmal auch direkte Ableitstromprüfung genannt.

Umfang der Prüfung

Für Einzelheiten - siehe Abschnitt 4.4.5 Ableitstromprüfungen - Allgemeines.

Beispiele für Fehler

Für Einzelheiten - siehe Abschnitt 4.4.4 Ersatzableitstromprüfung.

Abbildung 4-15: Schutzleiterableitstromprüfung für Gerät der Klasse I.

Messprinzip / Grenzwerte Messung an einem Gerät der Klasse I:

Abbildung 4-16: Beispiel für die Prüfung des Schutzleiterstroms

Das Gerät muss eingeschaltet sein. Es wird der Strom gemessen, der durch den Schutzleiter des Geräts fließt.

Das Gerät muss isoliert gegen Erde aufgebaut werden, um zu verhindern, dass ein Teil des Ableitstroms direkt nach Erde statt durch den Schutzleiter und Erde abfließt. Dies stellt die wichtigste Mangelhaftigkeit gegenüber der differentiellen Ableitstromprüfung dar.

Ungeerdete berührbare Metallteile werden NICHT in diese Prüfung einbezogen. Sie werden als Teile der Klasse II betrachtet und bei der Berührungsableitstromprüfung überprüft.

Hinweise:

- Wenn die Ableitströme bei unterschiedlichen Betriebsarten eines Geräts voneinander abweichen, müssen alle Betriebsarten überprüft werden. Das höchste Ergebnis (es ist das schlechteste) muss berücksichtigt werden!
- Wenn die Position des Phasen- und des Neutralleiters in der Installation oder dem Gerät nicht definiert ist, muss die Prüfung in beiden Richtungen durchgeführt werden, wobei das höhere Ergebnis berücksichtigt wird.

4.4.7 Differenzableitstromprüfung

Der Differenzableitstrom ist der gemessene Unterschied des Stroms zwischen dem stromführenden und dem neutralen Leiter, der einen echten Wert dafür liefert, wie viel Strom das Gerät an Ground (Erde) verliert.

Abbildung 4-17: Differenzableitstromprüfung für Gerät der Klasse I

Umfang der Prüfung

Für Einzelheiten - siehe Abschnitt 4.4.5 Ableitstromprüfungen - Allgemeines.

Beispiele für Fehler

Für Einzelheiten - siehe Kapitel 4.4.4 Ersatzableitstromprüfung.

Messprinzip / Grenzwerte Messung an einem Gerät der Klasse I:

Abbildung 4-18: Beispiel für Differenzableitstromprüfung

Das Gerät muss eingeschaltet sein. Der Ableitstrom wird als Differenz der Ströme durch die Leiter L und N gemessen. Das Ergebnis hängt nicht davon ab, auf welchem Untergrund das Gerät aufgestellt ist.

Ungeerdete berührbare Metallteile werden NICHT in diese Prüfung einbezogen. Sie werden als Teile der Klasse II betrachtet und bei der Berührungsableitstromprüfung überprüft.

Hinweise:

- Wenn die Ableitströme bei unterschiedlichen Betriebsarten eines Geräts voneinander abweichen, müssen alle Betriebsarten überprüft werden. Das höchste Ergebnis muss berücksichtigt werden.
- Wenn die Position des Phasen- und des Neutralleiters in der Installation oder dem Gerät nicht definiert ist, muss die Prüfung in beiden Richtungen durchgeführt werden, wobei das höhere Ergebnis berücksichtigt wird.
- Die Differenzableitstromprüfung wird gegenüber der Schutzleiterprüfung vorgezogen, da das Aufstellen des Geräts auf einem leitenden Untergrund das Messergebnis nicht stört.

4.4.8 Berührungsableitstromprüfung

Umfang der Prüfung

Bei dieser Prüfung werden Ableitströme (kapazitiv, resistiv, Fehlerströme) gemessen, die über das isolierte berührbare Metallteil (falls berührt) durch den Körper nach Erde abfließen würden.

Abbildung 4-19: Berührungsableitstromprüfung für Gerät der Klasse II

Das Gerät muss eingeschaltet sein. Der Strom durch die isolierten berührbaren Teile wird gemessen (jedes Teil separat).

Die Messsonde simuliert den menschlichen Körper und ist innerhalb des Messinstruments geerdet.

Beispiele für Fehler

Fehler: Verringerter Isolationswiderstand zwischen stromführenden Teilen und einem isolierten berührbaren Metallteil, verursacht durch Schmutz, Staub und Feuchtigkeit. **Ergebnis:** Gefährliche Berührungsspannung am berührbaren isolierten Metallteil. Es besteht die Gefahr eines elektrischen Schlags, wenn man dieses Teil berührt.

Abbildung 4-20: Beispiel einer zu hohen Berührungsspannung

Messprinzip / Grenzwerte:

Messung an einem Gerät der Klasse II (Dasselbe Verfahren wird für isolierte berührbare Teile an Geräten der Klasse I benutzt.)

Abbildung 4-21: Beispiel einer zu hohen Berührungsspannung

Hinweise:

- Jedes berührbare Metallteil muss separat überprüft werden. Die höchsten Ergebnisse müssen berücksichtigt werden.
- Dies ist eine Ersatzmessung, wenn die Isolations- und die Ersatzableitstromprüfung fraglich sind.
- Sie ist oft die einzige anwendbare Ableitstrommessung, wenn die Versorgung nicht unterbrochen werden darf.
- Wenn die Berührungsableitströme bei unterschiedlichen Betriebsarten eines Geräts voneinander abweichen, müssen alle Betriebsarten überprüft werden. Das höchste Ergebnis muss berücksichtigt werden.
- Wenn die Position des Phasen- und des Neutralleiters in der Installation oder dem Gerät nicht definiert ist, muss die Prüfung in beiden Richtungen durchgeführt werden, wobei das höhere Ergebnis berücksichtigt wird.
- Das Messinstrument muss während der Prüfung gut geerdet sein.

4.4.9 Polaritätsprüfung

Umfang der Prüfung

Der Polaritätsprüfung prüft die Richtigkeit der Polarität von IEC-Leitungen, Verlängerungskabeln usw. Mit diesem Test können Kurzschlüsse, vertauschte und unterbrochene Leiter in Kabeln gefunden werden. Diese Prüfung ist in Ländern (z. B. Großbritannien, Australien) vorgeschrieben, in denen die Position von Phasen- und Neutralleiter vorgegeben ist Mit der Polaritätsprüfung können Kurzschlüsse sowie vertauschte und unterbrochene Leiter in Anschlussleitungen gefunden werden.

Abbildung 4-22: Polaritätsprüfung

Beispiele für Fehler

Fehler: Die L-und N-Leiter sind im Verlängerungskabel vertauscht. **Ergebnis**: Der im L-Eingang des Geräts installierte Schutzkreis funktioniert nicht.

Fehler: Die L-und N-Leiter sind in der Anschlussleitung vertauscht.

Ergebnis: Die im L-Leiter des Geräts installierte Sicherung löst nur bei einem Kurzschluss zwischen L und N, nicht bei einem Kurzschluss zwischen L und PE aus.

Abbildung 4-23: Leiterfehler – Polarität

Messprinzip / Grenzwerte

Abbildung 4-24: Beispiel der Polaritätsprüfung

4.4.10 Last- und Ableitstrommessungen (Messungen mit Stromzangen)

Vorteile von Messungen mit Stromzangen sind:

- Die gemessene elektrische Einrichtung braucht nicht vom Netz getrennt zu werden.
- Durch Umfassen einzelner Leiter können selektive Stromprüfungen durchgeführt werden.
- Einzelne Ströme können ohne Abtrennen gemessen werden.

Umfang der Prüfung – Lastströme

Eine Stromzange ist ein Standardmessumformer für Leistungs- und Lastmessungen. Für Wechselströme von 100 mA bis zu mehreren 1000 A ist die Messung mit Stromzangen einfach und relativ genau. Stromzangen eignen sich bestens:

- Zur Funktionsprüfung von fest installierten Geräten.
- Zur Funktionsprüfung von Geräten mit Nennströmen > 16 A.
- Zur Fehlersuche in Strompfaden in Geräten.

Abbildung 4-25: Strommessungen Stromzangen

Das Gerät muss eingeschaltet sein. Durch Umfassen der Leiter einzeln, können Lastoder Ableitströme gemessen werden.

Umfang der Prüfung – Ableitströme

Mit Stromzangen können auch Ableitströme gemessen werden. Jedoch hat diese Messung viele ernsthafte Nachteile:

- Die Ergebnisse sind nicht genau. Sie werden stark durch externe magnetische und elektrische Felder beeinflusst (verursacht durch Lastströme, große Metallflächen nahe bei Spannungsquellen usw.). Bei Strömen unter 10 mA machen die Einflüsse die Ergebnisse wahrscheinlich unbrauchbar.
- Das Umfassen aller stromführenden und neutralen Leiter in einem Einphasenund in einem Drehstromsystem würde theoretisch den Ableitstrom ergeben. Dieses Prinzip funktioniert in der Praxis nicht gut.

Daher kann das Messen von Ableitströmen im Bereich einiger mA nicht als genau betrachtet werden. Es wird ein großes Maß an Voraussetzungen und Erfahrung des Anwenders benötigt, um aussagekräftige Ergebnisse zu erzielen.

Die örtlichen Bestimmungen müssen darauf überprüft werden, ob die Ableitstromprüfung mit der Stromzange als aussagekräftig betrachtet werden kann.

Beispiele für Fehler, für die die Fehlersuche mit der Stromzange empfohlen wird

Fehler: Ein Pumpenlaufrad in dem fest installierten Gerät ist stecken geblieben. Es fließen hohe Versorgungsströme, während die Pumpe laufen soll.

Ergebnis: Hohe Fehlerströme können zu gefährlicher Überhitzung des Geräts führen. Das kann zu einem Brand führen!

Fehler: Ein leistungsfähiges Heizgerät mit hohem nominellem Ableitstrom war fest installiert.

Ergebnis: Gelegentliches Auslösen des RCD. Gefährliche Berührungsspannungen können an berührbaren isolierten Metallteilen auftreten, wenn die elektrische Installation nicht korrekt ausgelegt ist.

Abbildung 4-26: Funktions- und Ableitstromprobleme

Messprinzip / Grenzwerte

Abbildung 4-27: Beispiele für Prüfungen mit Stromzangen

Das Gerät ist eingeschaltet. Durch Umfassen der Leiter einzeln, können Last- oder Ableitströme gemessen werden.

Hinweise:

- Für Ableitstrommessungen müssen spezielle Stromzangen benutzt werden (z. B. METREL A1019).
- Falls große Lastströme (>1 A) in der Nähe vorhanden sind, stören sie fast mit Sicherheit die Ableitstromergebnisse (zu hohe Messwerte).
- Es ist anzuraten, dass sich der Pr
 üfer mit dem Einfluss externer Felder vertraut macht. Wenn die St
 örquelle bekannt ist, kann ihr Einfluss durch Verwendung verschiedener Techniken minimiert werden (
 Ändern der Position der Stromzange, Ansetzen der Stromzange nahe Erdpotential, Suche nach der geringsten Anzeige usw.).
- Im Zweifel wird empfohlen, andere Ableitstrommessmethoden zu benutzen.
- Wenn die Ableitströme bei unterschiedlichen Betriebsarten eines Geräts voneinander abweichen, müssen alle Betriebsarten überprüft werden. Das höchste Ergebnis muss berücksichtigt werden.
- Wenn die Position des Phasen- und des Neutralleiter in der Installation oder dem Gerät nicht definiert ist, muss die Prüfung in beiden Richtungen durchgeführt werden, wobei das höhere Ergebnis berücksichtigt wird.
- Die Messung mit der Stromzange eignet sich gut für fest installierte Einrichtungen.

4.4.11 Funktionsprüfung

Umfang der Prüfung

In ihrer einfachsten Form ist die Funktionsprüfung einfach eine Überprüfung, um sicherzustellen, dass das Gerät korrekt arbeitet. Die Verwendung hoch entwickelter Messinstrumente erlaubt die Lastprüfung, die eine effektive Methode darstellt, das Vorliegen von Fehlern im Gerät festzustellen.

Mit der Funktionsprüfung wird festgestellt, ob das Gerät ordnungsgemäß funktioniert. Die Verwendung hoch entwickelter Messinstrumente erlaubt die Lastprüfung, die eine effektive Methode darstellt, das Vorliegen von Fehlern im Gerät festzustellen.

Abbildung 4-28: Funktionsprüfung

Beispiele für Fehler

Fehler: Der falsche Zusammenbau von Geräten nach der Reparatur ist eine der häufigsten Ursachen für Funktionsfehler.

Fehler: Die Möglichkeit des Auftretens von Fehlern ist höher, wenn Geräte in staubiger und feuchter Umgebung arbeiten oder nur gelegentlich benutzt werden.

Ergebnis: Untaugliche Funktion des Geräts, Auslösen von Überstromtrenneinrichtungen.

Messprinzip / Grenzwerte

Abbildung 4-29: Beispiel für Funktionsprüfungen

Das Gerät ist eingeschaltet. Der Laststrom und die Versorgungsspannung werden im Messinstrument gemessen. Lastleistung oder/und Laststrom werden am Messinstrument angezeigt.

Hinweise:

- Es sollten alle Betriebsarten des Geräts betrachtet werden.
- Die Funktionsprüfung wird als letzter Schritt in einer Sicherheitsprüfabfolge durchgeführt. Sie sollte nur durchlaufen werden, wenn alle vorhergehenden Sicherheitsprüfungen bestanden wurden! Die Funktionsprüfung deckt selten ein Sicherheitsproblem auf!

• Diese Prüfung wird nach Wartungs- oder Reparaturarbeiten empfohlen. Bei Geräten, die in ungünstiger Umgebung (Staub, Feuchtigkeit, Hitze) betrieben werden, ist es sinnvoll, die Funktionsprüfung als Teil einer regelmäßigen Prüfung aufzunehmen.

4.4.12 PRCD Prüfung

Mithilfe dieser Prüfung wird die Zeit bis das RCD bei einem Fehler auslöst gemessen

Abbildung 4-30: PRCD Prüfung

Abbildung 4-31: PRCD Prüfung

4.4.13 Aktive Polaritätsprüfung

Diese Prüfung ermöglicht die Prüfung von PRCD geschützten Kabeln, während am Prüfling eine Spannung anliegt.

Abbildung 4-32: Aktive Polaritätsprüfung

4.5 Prüfung der Sicherheit von Maschinen und Schaltanlagen

4.5.1 Erfahren Sie mehr über die Sicherheit von Maschinen.

Typische gefährliche Situationen im Zusammenhang mit elektrischen Ausrüstung sind:

- Ausfälle oder Fehler in der elektrischen Ausrüstung, die zu einem elektrischen Schlag oder elektrischen Brand führen können.
- Ausfälle oder Fehler in Steuerkreisen, die zu einer Fehlfunktion der Maschine führen
- Störungen oder Unterbrechungen in den Stromversorgungen sowie Ausfälle oder Fehler in den Stromkreisen, die zu einer Fehlfunktion der Maschine führen.
- Verlust der Kontinuität von Schaltungen, die von gleitenden oder rollenden Kontakten abhängen, was zum Ausfall einer Sicherheitsfunktion führt.
- Elektrische Störungen entweder von außerhalb der elektrischen Ausrüstung oder intern erzeugt, was zu einer Fehlfunktion der Maschine führt.
- Freisetzung von gespeicherter Energie (entweder elektrisch oder mechanisch), die zu einem Stromschlag oder unerwarteten Bewegungen führen, und dadurch Verletzungen entstehen können.
- Hörbarer Lärm in Bereichen, die Personen gesundheitliche Probleme bereiten.
- Oberflächentemperaturen, die zu Verletzungen führen können.

Um die elektrische Sicherheit von Maschinen zu überprüfen, müssen die entsprechenden Messungen durchgeführt werden:

- Nach dem Aufstellen der Maschine.
- Nach der Installation der Maschine.
- Nach einer Nachrüstung oder Änderung an der Maschine.
- Während periodischer Wiederholungsprüfungen der Maschine.
4.5.2 Überprüfung der Sicherheit von Maschinen

Nach IEC/EN 60204, Ed.5 Überprüfung der Sicherheit von elektrischen Maschinen wird mittels Sichtprüfung und Messungen durchgeführt:

- Überprüfung, dass die elektrische Ausrüstung mit ihrer technischen Dokumentation übereinstimmt.
- Überprüfung des Schutzes gegen indirektes Berühren durch automatische Trennung.
- Prüfung des Isolationswiderstandes.
- Hochspannungsprüfung.
- Schutz gegen Restspannungen.
- Funktionsprüfungen.

4.5.3 Sicherheit - Messungen

Die Prüfung der Sicherheit von Maschinen und Schaltschränken erfolgt nach den gleichen Prüftechniken wie bei PAT-Prüfungen. Zusätzlich zu diesen fünf sind noch weitere Prüfungen durchzuführen, bei denen der Funktionstest eine Erweiterung der PAT-Prüfung darstellt:

- Hochspannungsprüfung
- Schleifenimpedanz und Kurzschlussstrom
- RCD Prüfung
- Entladezeit
- Funktionsprüfung

4.5.3.1 Hochspannungsprüfung

Der Hochspannungsprüfung wird verwendet. um die Unversehrtheit der Isolationsmaterialien bestätigen. Während der Prüfung werden die zu Isolationsmaterialien in der Maschine mit einer höheren Spannung als im Normalbetrieb belastet. Eine leistungsstarke AC-Hochspannungsquelle wird zwischen den spannungsführenden Leitern / Neutralleiter Prüfanschlüssen und dem Metallgehäuse der Maschine angeschlossen. Das Gerät löst aus, wenn der Leckstrom den vordefinierten Grenzwert überschreitet.

Abbildung 4-33: Hochspannungsprüfung

Komponenten und Geräte, die nicht für die Prüfspannung ausgelegt sind, müssen während der Prüfung getrennt werden. Komponenten und Geräte, die gemäß den

Produktnormen einer Spannungsprüfung unterzogen wurden, können während der Prüfung getrennt werden.

4.5.3.2 Schleifenimpedanz und Kurzschlussstrom

Das Instrument misst die Impedanz der Schleife und berechnet den Kurzschlussstrom. Die Ergebnisse können mit Grenzwerten verglichen werden, die auf der Basis ausgewählter Schutzschalter oder RCDs eingestellt sind. Die Messung entspricht den Anforderungen der Norm EN 61557-3.

Abbildung 4-34: Schleifenimpedanz Prüfung

4.5.3.3 RCD Prüfung

Zur Überprüfung des (der) RCD(s) in RCD-geschützten Installationen sind verschiedene Prüfungen und Messungen erforderlich. Die Messungen entsprechen der Norm VDE 0413-6 (EN 61557-6). Folgende Messungen und Prüfungen (Unterfunktionen) können durchgeführt werden:

- Berührungsspannung.
- Auslösezeit.
- Auslösestrom.
- RCD Auto-Test.

Abbildung 4-35: Prüfen eines RCD in einer RCD geschützten Maschine

Abbildung 4-36: Prüfung eines RCD in der Elektroinstallation

4.5.3.4 Entladezeit

Wenn große Kondensatoren in Maschinen von der Versorgung getrennt werden, verbleibt häufig eine (Rest-) Ladung an internen Maschinenkomponenten. Stromführende Teile mit einer Restspannung von mehr als 60 V nach dem Abschalten der Stromversorgung müssen innerhalb von 5 s nach Abschaltung der Versorgung auf 60 V oder weniger entladen werden.

Bei Steckern oder ähnlichen Geräten mit freiliegenden Leitern (z. B. Kontaktstiften), wenn diese ausgesteckt sind, muss die Spannung innerhalb von 1 s nach dem Abschalten der Stromversorgung auf 60 V oder weniger entladen werden.

Abbildung 4-37: Entladungszeitprüfung

4.5.3.5 Funktionsprüfung

Mit der Funktionsprüfung wird festgestellt, ob das Gerät ordnungsgemäß funktioniert. Folgende Punkte sollten während des Betriebs der Maschine überprüft werden:

- Temperaturregler, Monitore.
- RCDs und andere Trennvorrichtungen.
- Funktionstest der Trennvorrichtungen.
- Funktionstest von Schaltern, Lampen, Tasten.
- Rotierende Teile, Motoren, Pumpen.

5 Informationen zu den Demonstrationstafeln

5.1 Allgemeine Anmerkungen:

- Die Beschreibungstabellen enthalten folgende Informationen:
 - Simulierte Werte für Normal- und Fehlerfallbedingungen ("Fehlerwerte").
 - Anhaltswerte für Testergebnisse bei typischen Messungen.
 - Position, wo die simulierten Fehler gesetzt werden, angegeben in Klammern unter "Simulation zwischen Kontakten".
- Die "Fehlerwerte" (in den Fehlerfeldern der Tabellen angegebene simulierte Werte) in den Beschreibungstabellen gelten nur bei einem zu einer gegebenen Zeit eingeschalteten Fehler.
 Bei mehr als einem Fehler gleichzeitig werden die "Fehlerwerte" summiert.
- Einzelne Demonstrationstafeln werden anhand der im RFID-Tag gespeicherten Informationen (Fehlerangabe, Simulationswerte) erkannt. Die Tags befinden sich in der linken unteren Ecke jeder Tafel. Die Informationen des Tags werden durch das PAT Demoboard gelesen, wenn es korrekt auf das Gerät gesetzt wird.
- Die Fehlerwerte (Widerstände und Kapazitäten) in den Beschreibungstabellen sind unverbindlich. Die tatsächliche Ungenauigkeit beträgt bis zu ±10 %.
- Wenn die Ausgänge von Messgeräten nicht galvanisch getrennt sind, kann ein zusätzlicher Fehler von bis zu 10 % an der Anzeige des Geräts auftreten.

5.2 Tragbares Gerät der Klasse 1 (Bügeleisen)

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,84 Ω
Fehler 1	Geerdetes Metallteil (2) und Schutz- leiteranschluss am Stecker (3)	Erdverbindung	0,02 Ω	0,84 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	106 kΩ
Fehler 2	Phasen- und	Isolation 500 V=	>20 MΩ	0,106 ΜΩ
	Schutzleiteranschlüsse am Stecker	Leck 230 V, 50 Hz	0,00 mA	2,17 mA
	(3)	Kriechleck	0,00 mA	2,17 mA
	Zu hoher kapazitiver Strom	Fehlerwert	/	33 nF
Eablar 2	Phasen- und Schutzleiteranschlüsse am Stecker (3)	Isolation 500 V=	>20 MΩ	>20 MΩ
remer 5		Leck 230 V, 50 Hz	0,00 mA	2,12 mA
		Kriechleck	0,00 mA	2,12 mA
	Isolationsfehler	Fehlerwert	>20 MΩ	238 kΩ
E.L.	Zugängliches isoliertes Metallteil (1) und Phasenanschluss am Stecker (3)	Isolation 500 V=	>20 MΩ	0,238 MΩ
Fenier 4		Berührungsleck 230 V	0,00 mA	0,97 mA
		Kriechleck	0,00 mA	0,97mA
Eablar 5	Funktionsfehler	Funktionell	/	Unterbrechungen
Ferlier 3	Funktionell	Funktionell	/	Unterbrechungen

Tabelle 5.1: Beschreibung der simulierten Fehler / zugehörigen Tests

5.3 Tragbares Gerät der Klasse II – Radioempfänger

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Isolationsfehler	Fehlerwert	>20 MΩ	238 kΩ
Fobler 1	Phasenanschluss am Stecker (2) und zugängliches isoliertes Metallteil (1)	Isolation 500V V= (Sonde)	>20 MΩ	0,238 MΩ
		Berührungsleck 230 V~	0,00 mA	0,97 mA
		Kriechleck (Sonde)	0,00 mA	0,97 mA
Eablar 2	Funktionsfehler	Funktionell	/	Unterbrechungen
	Funktionell	Funktionell	/	Unterbrechungen

Tabelle 5.2: Beschreibung der simulierten Fehler / zugehörigen Tests

5.4 IEC-Kabel

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,84 Ω
Fehler 1	Schutzleiteranschluss am Stecker (1) und Schutzleiteranschluss an der Kupplung (2)	Erdverbindung	0,02 Ω	0,84 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	106 kΩ
Fehler 2	Phasen- und Schutzleiteranschlüsse an der Kupplung (2)	Isolation 500 V=	>20 MΩ	0,106 ΜΩ
Echlor 3	Überkreuzte Phasen- und Nullleiter	Polarität	1	L, N überkreuzt
i enler 5	Polarität	Polarität	/	"L, N überkreuzt"

Tabelle 5.3: Beschreibung der simulierten Fehler / zugehörigen Tests

Anmerkung:

Aus Gründen der Sicherheit befindet sich ein Serienwiderstand zwischen den L- und N-Anschlüssen von Anschluss 1 und Anschluss 2. Bei einigen Prüfgeräten kann sich daher ein Misslingen beim Polaritätstest ergeben.

5.5 Tragbares Gerät der Klasse 1 (Kabeltrommel)

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,84 Ω
Fehler 1	Schutzleiteranschluss an der Ausgangs- steckdose (1) und Schutzleiteranschluss am Netzstecker (2)	Erdverbindung	0,02 Ω	0,84 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	106 kΩ
Fehler 2	Phasen- und Schutzleiteranschlüsse an der Steckdose (1)	Isolation 500 V=	>20 MΩ	0,106 MΩ
		Leck 230 V, 50 Hz	0,00 mA	2,17 mA
		Kriechleck	0,00 mA	2,17 mA
	Isolationsfehler	Fehlerwert	30 MΩ	238 kΩ
Fehler 3	Zugängliches isoliertes Metallteil (3) und	Isolation 500 V= (Sonde)	13 MΩ	0,237 MΩ
	Phasenanschluss am Stecker (2)	Berührungsleck 230 V~	0,00 mA	0,97 mA
		Kriechleck (Sonde)	0,00 mA	0,97 mA

Tabelle 5.4: Beschreibung der simulierten Fehler / zugehörigen Tests

5.6 Tragbares Gerät der Klasse 1 (Kaffeemaschine)

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,43 Ω
Fehler 1	Geerdetes Metallteil (1) und Schutzleiteranschluss am Stecker (2)	Erdverbindung	0,02 Ω	0,43 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	106 kΩ
Echlor 2	Phasen- und Schutzleiteranschlüsse am Stecker (2)	Isolation 500 V=	>20 MΩ	0,106 ΜΩ
renier z		Leck 230 V, 50 Hz	0,00 mA	2,17 mA
		Kriechleck	0,00 mA	2,17 mA
	Zu hoher kapazitiver Strom	Fehlerwert	/	33 nF
Eablar 3	Phasen- und Schutzleiteranschlüsse am Stecker (2)	Isolation 500 V=	>100 MΩ	>100 MΩ
		Leck 230 V, 50 Hz	0,00 mA	2,12 mA
		Kriechleck	0,00 mA	2,12 mA
Echlor 4	Funktionsfehler	Funktionell	/	Unterbrechungen
Fenier 4	Funktionell	Funktionell	/	Unterbrechungen

Tabelle 5.5: Beschreibung der simulierten Fehler / zugehörigen Tests

5.7 Bewegliches Gerät der Klasse 1 (Waschmaschine)

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,84 Ω
Fehler 1	Geerdetes Metallteil (1) und Schutzleiteranschluss am Stecker (2)	Erdverbindung	0,02 Ω	0,84 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	106 kΩ
Febler 2	2 Phasen- und Schutzleiteranschlüsse	Isolation 500 V=	>20 MΩ	0,106 ΜΩ
		Leck 230 V, 50 Hz	0,00 mA	2,17 mA
		Kriechleck	0,00 mA	2,17 mA
	Zu hoher kapazitiver Strom	Fehlerwert	/	33 nF
Echlor 2	Phasan und Sabutzleiteranachlüsse	Isolation 500 V=	>100 MΩ	>100 MΩ
renier 5	am Stecker (2)	Leck 230 V, 50 Hz	0,00 mA	2,12 mA
		Kriechleck	0,00 mA	2,12 mA
Echlor 4	Funktionsfehler	Funktionell	/	Unterbrechungen
remer 4	Funktionell	Funktionell	/	Unterbrechungen

Tabelle 5.6: Beschreibung der simulierten Fehler / zugehörigen Tests

5.8 Elektrische Maschine

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,43 Ω
Fehler 1	Schutzleitereingangsanschluss (4) und geerdetes Metallteil (2)	Erdverbindung	0,02 Ω	0,43 Ω
	Schutzleitereingangsanschluss (4) und geerdetes Metallteil (1)	Erdverbindung	0,02 Ω	0,02 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	1,88 MΩ
Fehler 2	Phasen (3) und Schutzleiter (1)	Isolation 1000 V=	>20 MΩ	1,880 MΩ
	Eingangsanschlüsse	Spannungsfestigkeit 1000 V~	0,1 mA	0,6 mA
Fahlar 2	Zu hohe Ladung der Filterkondensatoren	Fehlerwert	4,7 nF 100 MΩ	100 nF 100 MΩ
renier 3	Phase und Nullleiter am Eingangsanschluss (3)	Entladezeit*	ca. 0,4 s	ca. 9 s
Febler 4	Funktionsfehler	Funktionell	1	Unterbrechungen
i eillei 4	Funktionell	Funktionell	/	Unterbrechungen

Tabelle 5.7: Beschreibung der simulierten Fehler / zugehörigen Tests

* gemessen mit CE-Multitester (Widerstand des Messkreises 40 MΩ) Bei anderen Prüfgeräten können die Entladezeiten variieren, abhängig von ihrem Innenwiderstand.

5.9 Niederspannungsschalteinrichtung

	Simuliert	Fehlerwert	Fehler aus- geschaltet	Fehler ein- geschaltet
	Simulation zwischen Kontakten	Durchgeführte Messung	Fehler aus- geschaltet	Fehler ein- geschaltet
	Loser Kontakt des Schutzleiters	Fehlerwert	0,02 Ω	0,41 Ω
Fehler 1	Schutzleitereingangsanschluss (1) und geerdetes Metallteil (2)	Erdverbindung	0,02 Ω	0,41 Ω
	Isolationsfehler	Fehlerwert	>20 MΩ	1,88 MΩ
Fehler 2	Phasen- (2) und Schutzleiter-(3)Anschlüsse	Isolation 1000 V=	>20 MΩ	1,880 MΩ
		Spannungsfestigkeit 2500 V~	0,1 mA	1,4 mA
	Zu hohe Ladung der Filterkondensatoren	Fehlerwert	4,7 nF 100 MΩ	100 nF 100 MΩ
renier 3	Phase und Nullleiter an den Eingangsanschlüssen (2)	Entladezeit*	ca. 0,4 s	ca. 9 s

Tabelle 5.8: Beschreibung der simulierten Fehler / zugehörigen Tests

 * gemessen mit CE-Multitester (Widerstand des Messkreises 40 M Ω) Bei anderen Prüfgeräten können die Entladezeiten variieren, abhängig von ihrem Innenwiderstand.

6 Spezifikationen

6.1 Technische Daten

Schutzklassifizierung (außer Simulationsfläche)	. Klasse I
Nenneingangsspannung	.230 V (+6 %, -10 %)
Als Option auf Anfrage:	.115 V (+6 %, -10 %)
Leistungsaufnahme:	.15 VA max.
Überspannungskategorie:	.KAT II 300 V
Frequenzbereich:	.45 Hz bis 66 Hz
Verschmutzungsgrad	.2
Maße (B x H x T)	.350 mm x 335 mm x 160 mm
Gewicht (ohne Zubehör)	.7 kg
Betriebstemperaturbereich	. 10 °C ÷ 36 °C
Lagertemperaturbereich	20 °C ÷ +50 °C
Max. Luftfeuchte	.95 % RF (10 °C ÷ 36 °C), ohne
	Kondensatbildung

Die angegebenen Widerstands- und Kapazitätswerte für die Simulation (Beschreibungstabellen 5.1 bis 5.8) sind unverbindlich. Die tatsächliche Ungenauigkeit beträgt $< \pm 10\%$ der gegebenen "Fehlerwerte".

Wenn die Ausgänge von Messgeräten nicht galvanisch getrennt sind, kann ein zusätzlicher Fehler von 10 % an der Anzeige des Geräts auftreten.

6.2 Inhalt des Satzes PAT Demoboard (Bestellnummer MI 3300)

- Gerät PAT Demoboard.
- 8 Demonstrationstafeln (Bügeleisen, Empfänger, IEC-Kabel, Kabeltrommel, Kaffeemaschine, Waschmaschine, Schalteinrichtung).
- CD mit Benutzeranleitung und Handbuch zum Prüfen elektrischer Ausrüstungen.
- Brücken zum Kurzschließen von Phasen- und Nullleiteranschlüssen.
- Verlängerungskabel für Demonstration des Tests von IEC-Verlängerungskabeln.
- Netzanschlusskabel.

- Messleitung zum Prüfen der Entladezeit.
- Tragetasche für Demonstrationstafeln.
- Produktionsüberprüfungsdaten.

AD 4 – MI 3399 PV Photovoltaic Systems Trainer

Inhaltsverzeichnis:

1	Einf	führung	268		
	1.1	Allgemeine Beschreibung	.268		
	1.2	Allgemeine Warnungen			
	1.3	Angewandte Standards	.269		
	1.4	Bedeutung der Warnungs-/Informationssymbole an der Bedienoberfläche	270		
	1.5	Liste der Messungen, die vorgeführt werden können	.270		
2	Bes	schreibung der Bedienoberfläche	271		
3	Mes	ssungen	272		
	3.1	Durchgängigkeit des Erdungssystems	.272		
	3.2	PV-Anordnung Isolierwiderstand	.273		
	3.3	Einstrahlungs- und Temperaturmessung	.274		
	3.4	Uoc-, Isc- und I/V-Eigenschaftsmessung	.275		
	3.5	Automatischer Prüfablauf	.276		
	3.6	PV-Modulprüfung	.277		
	3.7	Messung des Wechselrichtereingangs – DC-Seite	.278		
	3.8	Messung am Wechselrichterausgang – AC-Seite	.279		
	3.9	Wechselrichtereffizienz	.280		
4	Tec	hnische Daten	281		
5	Wai	rtung	282		
	5.1	Reinigung	.282		
	5.2	Service	.282		
6	Star	andardausführung			

1 Einführung

1.1 Allgemeine Beschreibung

PV-Demo-Board simuliert ein Photovoltaik-Stromerzeugungssystem. Das PV-Demo-Board wird vorzugsweise im Vertrieb eingesetzt, um den Betrieb und die Anwendung von PV-Testgeräten zu demonstrieren. Es dient aber auch als Schulungs- oder Lehrinstrument, um verschiedene Tests zu zeigen, die von unterschiedlichen PV-Testinstrumenten unterstützt werden. Das Board ist in einem praktischen Kunststoffkoffer untergebracht.

Demonstrations-/Simulationsmöglichkeiten:

- PV-Anordnung Gleichstromausgang,
- Gleichstrommessung,
- Wechselrichter mit Messung des Wechselstroms und der Spannung,
- Pyranometer-Simulation,
- Temperatursimulation
- Isolationswiderstand der PV-Anordnung,
- Durchgängigkeit der Schutzerdung.

Das Demo-Board ist gemäß des Europäischen Sicherheitsstandards EN 61010-1 konstruiert.

1.2 Allgemeine Warnungen

- Wird die Ausrüstung nicht wie vom Hersteller angegeben eingesetzt, kann der Schutz der Ausrüstung beeinträchtigt werden.
- Setzen Sie das PV-Demo-Board nur an ausreichend geerdeten Versorgungssystemen ein.
- Das PV-Demo-Board darf ausschließlich von Personal eingesetzt werden, das mit dem Board und den eingesetzten Messinstrumenten vertraut ist!
- Sollte das PV-Demo-Board nicht entsprechend dieses Benutzerhandbuchs verwendet werden, könnte es beschädigt werden.
- Stellen Sie einen Schaden fest, dann ist von einem Einsatz des PV-Demo-Boards abzusehen!
- Die Wartung des PV-Demo-Boards darf ausschließlich von befugtem Personal durchgeführt werden!

1.3 Angewandte Standards

Das PV-Demo-Board MI 3088 wurde gemäß der folgenden Vorschriften gefertigt und getestet:

Elektromagnetisch	Elektromagnetische Verträglichkeit (EMV)					
EN 61326	Elektrische Mess-, Steuer-, Regel- und Laborgeräte – EMV-					
	Anforderungen					
	Klasse B (Handgeräte in kontrollierten EM-Umgebungen)					
Sicherheit (LVD)						
EN 61010-1	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und					
	Laborgeräte - Teil 1: Allgemeine Anforderungen					
Funktionalität						
Referenznorm für	Referenznorm für Photovoltaik-Systeme					
	Netzgekoppelte Photovoltaik-Systeme - Mindestanforderungen an					
	Systemdokumentation, Inbetriebnahme Prüfung und wiederkehrende					
EN 62446	Prüfungen					

Hinweis zu EN- und IEC-Normen:

 Der Text dieses Handbuchs enthält Referenzen zu europäische Normen. Alle Normen der Reihe EN 6XXXX (z. B. EN 61010) entsprechen den jeweiligen IEC-Normen mit derselben Nummer (z. B. IEC 61010); sie unterscheiden sich lediglich in den aufgrund der europäischen Harmonisierungsverfahren modifizierten Teilen.

1.4 Bedeutung der Warnungs-/Informationssymbole an der Bedienoberfläche

1.5 Liste der Messungen, die vorgeführt werden können

- PV-String Isolationswiderstand,
- Übergangswiderstand von PV-Modul-Metallauflagen an Schutzerde,
- PV-String Spannungs-/Stromeigenschaften,
- PV-String Gleichstrom,
- PV-String Gleichstrom-Leistung,
- Einstrahlung,
- Temperatur an PV-Modulen,
- Wechselrichterausgang Wechselstrom,
- Wechselrichterausgang Wechselspannung,
- Wechselrichterausgang Wechselstromleistung,
- Wechselrichter- und PV-Systemeffizienz.

2 Beschreibung der Bedienoberfläche

1	Bedienoberfläche	Die Bedienoberfläche verfügt über die typischen Bestandteile, die bei einem PV-
		Netzgerät erforderlich sind.
2	Koffer	Kunststoffkoffer des PV-Demo-Boards mit Griff.
3	PE-Anschluss	Nur für Testzwecke!
4	Wechselrichter	Messbuchsen für Wechselrichter der Eingangs-Gleichspannung
	Gleichspannung	(von der PV-Anordnung).
5	Wechselrichter Eingangs-	Zum Anbringen der Gleichstromklemmen.
	Gleichstrom	
6	Pyranometer-Ausgang	Ausgang zur Demonstration der Strahlungsmessung.
7	Ausgang PV-Anordnung	Ausgang für die Spannungs-/Stromeigenschaften der PV-Anordnung.
8	Anschluss an	Für die Durchgängigkeitemessung Erdungssysteme gedacht
	Metallkonstruktion	Ful die Durchgangigkeitsmessung Erdungssysteme gedacht.
9	Kofferdeckel mit Etikett	Etikett für PV-Modul.
10	Temperaturfühler-Ausgang,	Ausgang für Temperatur der PV-Anordnung.
11	Wechselrichter Ausgangs-	Messbuchsen für Wechselrichter Ausgangs-Wechselspannung.
	Wechselspannung	
12	Wechselrichter Ausgangs-	Zum Anbringen der Wechselstromklemmen.
	Wechselstrom	
13	Netzleuchte	Zeigt an, ob die korrekte Netzspannung am PV-Demo-Board anliegt.
14	Netzeingang	IEC-Gerätestecker zur Versorgung des PV-Demo-Boards,
		Universalnetzanschluss 115 V – 230 V
15	Warnsymbol	Als Hinweis für den korrekten Anschluss an die korrekte Stromversorgung.

Warnung: Alle Ausgänge sind ausschließlich für Demonstrationszwecke möglicher PV-Tests gedacht!

3 Messungen

3.1 Durchgängigkeit des Erdungssystems

Messort	Nennwert
Anschluss an Metallkonstruktion – PE-Anschluss	0,1 Ω

Instrumente	Funktionen
MI 3108	R LOWΩ ; 200 mA Widerstandsmessung (Menü INSTALLATION)
MI 3109	R LOWΩ ; 200 mA Widerstandsmessung (Menü SOLAR)

3.2 PV-Anordnung Isolierwiderstand

Messort	Nennwert
PE-Anschluss – DC-Schaltboard + Buchse	96 MΩ
PE-Anschluss – DC-Schaltboard – Buchse	92 MΩ

Instrumente	Funktionen
	RISO + ; Isolierwiderstandsmessung zwischen Modul / Array / String
MI 2100 MI 2100	positiv und Erdung
IVII 3108, IVII 3109	RISO + ; Isolierwiderstandsmessung zwischen Modul / Array / String
	negativ und Erdung

3.3 Einstrahlungs- und Temperaturmessung

Pyranometer

Messort	Nennwert
Pyranometer-Buchsen	780 W/m ²

Temperatur

Messort	Nennwert
Temperaturfühler-Anschluss	25 °C *

* Abhängig von der reellen Umgebungstemperatur und der Eigenerwärmung.

Instrumente	Funktion	en			
MI 3108, MI 3109	ENV.:	MEAS;	Messungen	der	Umgebungsparameter
	(Bestrahlung, Temperatur)				

3.4 Uoc-, Isc- und I/V-Eigenschaftsmessung

Messort	Gemesse Wert	n	STC-Wert		
DC-Schaltboard + Buchse – DC-Schaltboard - Buchse	Kurzschluss- strom (lsc)	48,2	Kurzschluss- strom (Isc)	49	
	Leerlauf- spannung (Uoc)	3,1	Leerlauf- spannung (Uoc)	4,1	
	Úmpp	44,8 V	Úmpp	45,2 V	
	Impp	2,4 A	Impp	3,1 A	
	Ртрр	107 W	Pmpp	140 W	

Angewandte Instrumente und Funktionen

Instrumente	Funktionen
MI 3108, MI 3109	Uoc/Isc ; Messung der Leerlaufspannung und des Kurzschlussstroms, I/V ; Messung von Strom/Spannung und der Strom-/Leistungs-Eigenschaften

Anmerkung:

Die STC-Werte werden angezeigt, wenn die Bestrahlung und die Temperatur zuvor • gemessen wurden.

Siehe Kapitel 3.3 Messung von Bestrahlung und Temperatur.

3.5 Automatischer Prüfablauf

Messort			Messwert	STC-Wert		
		96 MΩ				
PE-Anschluss – L	PE-Anschluss – DC-Schaltboard + Buchse		-	92 MΩ		
DC-Schaltboard + Buchse			48,2	49 V		
					3,1	4,1 A

Angewandte Instrumente und Funktionen

Instrumente	Funktionen
MI 3109	AUTOTEST; Automatische Messung des Isolierwiderstands und
	Uoc/Isc des PV-Moduls / -Arrays / -Strings.

Hinweise:

- Nur an MI 3109 anzuwenden. ►
- Die STC-Werte werden angezeigt, wenn die Einstrahlung und die Temperatur zuvor • gemessen wurden.

Siehe Kapitel 3.3 Messung von Einstrahlung und Temperatur.

3.6 PV-Modulprüfung

Messort	Gemessener Wert		STC-Wert	
DC-Schaltboard + Buchse – DC-Schaltboard - Buchse	Umpp	48,2 V	Umpp	48,5 V
		3,1 A	Impp	4,1 A
		151 W	Pmpp	200 W

Angewandte Instrumente und Funktionen

Instrumente	Funktionen
MI 3108, MI 3109	PANEL; Betriebspunkt des Strom-Spannungswechselrichters

Anmerkung:

 Die STC-Werte werden angezeigt, wenn die Einstrahlung und die Temperatur zuvor gemessen wurden.
Siehe Kapitel <u>3.3 Messung von Einstrahlung und Temperatur</u>.

277

3.7 Messung des Wechselrichtereingangs – DC-Seite

Messort	Mess	swert
Weekselrichtereingeng, Ruchse, Weekselrichtereingeng, Ruchse		48,2 V
Dete Stremeehleife umgriffen mit einer A 1201 Stremzenge		3,1 A
Rote Stromschielle umgniten mit einer A 1391-Stromzänge	P _{DC}	151 W

Instrumente	Funktionen
MI 3108, MI 3109	INVERTER: DC ; Messungen an der DC-Seite des Wechselrichters

3.8 Messung am Wechselrichterausgang – AC-Seite

Messort	Neni	nwert
AC Scholterboard L AC Scholterboard N	U _{AC}	227 V
	I _{AC}	0,60 A
Schwarze Stromschielle umgnifen mit einer A 1391 Stromzange	P _{AC}	135 W

Instrumente	Funktionen
MI 3108, MI 3109	INVERTER: AC ; Messungen an der AC-Seite des Wechselrichters

3.9 Wechselrichtereffizienz

Messort	Nenn	wert
	U _{DC}	48,2 V
Wachsalrichtary Ruchsa Wachsalrichtar - Ruchsa	IDC	3,1 A
AC-Schalterboard L – AC-Schalterboard N Rote und schwarze Stromschleifen umgriffen mit einer A 1391- Stromzange	P _{DC}	151 W
	U _{AC}	227 V
	I _{AC}	0,60 A
	P _{AC}	135 W
	n	90 %

Instrumente	Funktionen					
MI 3108, MI 3109	INVERTER: Wechselrichte	AC/DC; ers	Messung	des	Wirkungsgrads	des

4 Technische Daten

Nennspannung Stromversorgung Stromaufnahme Netzkabel. Abmessungen (Breite × Länge × Höhe) Gewicht Schutzklasse Überstromkategorie Verschmutzungsgrad:2	115 V/ 230 V, 50 Hz / 60 Hz 200 W Einleiter 450 × 330 × 110 mm 4,47 kg I (Erdschutzleiter) CAT II 300 V
Referenz-Betriebsbedingungen Referenzbereich, Temperatur Referenzbereich, Luftfeuchtigkeit	.10 °C ÷ 30 °C .40 % r.F. ÷ 70 % r.F.
Betriebsbedingungen Betriebstemperaturbereich Maximale relative Feuchte	0 °C ÷ 40 °C .95 %RH (0 °C ÷ 40 °C), kondensationsfrei
Lagerung Temperaturbereich Maximale relative Luftfeuchtigkeit	.–10 °C ÷ 70 °C .90 %RH (-10 °C ÷ 40 °C), 80 %RH (40 °C ÷ 70 °C),

5 Wartung

5.1 Reinigung

Verwenden Sie zur Reinigung der Oberfläche des Boards einen weichen, mit Seifenwasser oder Alkohol leicht angefeuchteten Lappen. Trocknen Sie anschließend das Board vor Benutzung vollständig ab.

Verwenden Sie keine Flüssigkeiten auf Benzinbasis! Verschütten Sie keine Flüssigkeiten über dem Board!

5.2 Service

Falls das Demo-Board ein ungewöhnliches Verhalten aufweist oder falls Sie einen Schaden bemerken, muss das Gerät von einem autorisierten Wartungsdienst untersucht werden. Für weitere Informationen wenden Sie sich an den Vertreiber oder an Ihren Händler.

Das Produkt verfügt über keine internen Teile, die vom Benutzer gewartet werden (Sicherungen, etc.).

Herstelleranschrift:

METREL d.d. Ljubljanska 77 1354 Horjul Slowenien

Tel.: +386 (0)1 7558 200 Fax.: +386 (0)1 7549 095 oder +386 (0)1 7549 226

6 Standardausführung

Es wird empfohlen, den Lieferumfang nach Erhalt zu überprüfen. Der Lieferumfang sollte die folgenden Teile umfassen:

- Demo-Board
- Netzkabel
- PS2-Adapter männlich/männlich
- Prüfleitung, 1,5 m, schwarz
- Prüfleitung,1,5 m, rot
- Benutzerhandbuch

ANHANG

INHALTSVERZEICHNIS:

	2.2	Literatur	.289
	2.1	Änderungen	.288
2	AN	HANG B	288
1	AN	HANG A - Abkürzungen	285

1 ANHANG A - Abkürzungen

@	Abkürzung für das Wort 'at'
Ο°	Grad Celsius
3W	3-Leiter Prüfart zur Messung des Erdungswiderstand (EIS)
4W	4-Leiter Prüfart (PQA-Test mit Flexzange)
A/AC/B	RCD Typ
AC	Wechselstrom
AUTOSEQUENCE [®]	Eine Reihe von Prüfungen, die in einer kombinierten
	Prüfung durchgeführt werden - Warenzeichen von Metrel
	d.d.
Durchschnitt	Mittelwert
CATI	Überspannungskategorie 1
CAT II	Überspannungskategorie 2
CAT III	Überspannungskategorie 3
CAT IV	Überspannungskategorie 4
CATV	Kabel TV
CE	Conformité Européenne (eng.: European Conformity)
Klasse A/S/B	Genauigkeitsklasse des Spannungs- / Leistungs-
	Analysers
Cu	Kupfer
d2	Entfernung zwischen den Prüfspitze S und H während
	einer 3-Leiter Prüfung
DAR	Dielektrische Absorptionsrate
DC	Gleichstrom
EIS	Sicherheit Elektrischer Anlagen
ELM	Elektrischer Ableitstrom Anzeige
EMV	Elektromagnetische Verträglichkeit
FELV	Funktionskleinspannung
f _{Nom}	Nennfrequenz
GAS	Gasleitung in einer Anlage, die geerdet und gegen
	Überspannungen mit einem Varistor geschützt ist.
GND	Ground
HV	Hochspannung
la	Strom für die Nennabschaltzeit
IEC	International Electrotechnical Commission
IMD	Isolationswächter
I _N ; I _{Nom}	Nennstrom der gewählten Sicherung, Nennstrom
I _k	Kurzschlussstrom
k	Kurzschlussstrom
	Short (S) Circuit © Current (I)
	Fehlerstrom des ersten Fehlers
ISO	IsolatiOn
IT	Erdungssystem bei dem der Versorgungsteil der
	Stromquelle von Erde getrennt ist.
lΔ	Fehlerstrom
IAN; IdN	Nennauslösestrom des RCD
, · ·	

jωLl-pe	Induktiver Teil der Schleifenimpedanz
L	Leiter in einem 1-phasigen System
L1	Leiter1 in einem 3-phasigen System
L2	Leiter2 in einem 3-phasigen System
L3	Leiter3 in einem 3-phasigen System
LAN	Local Area Network
LV	Nieder Spannung
LVD	Niederspannungsrichtlinie
max	Maximalwert
min	Minimalwert
N	Neutralleiter
P	Wirkleistung
, GT	Tradhare Geräte – Prüfungen
PC	Personal Computer
	Schutzleiter
	Vorbindung Schutzleiter und Vorsorgungsleiter Wird in
FEN	TN-C- oder TN-C-S-Erdungssystemen verwendet
PI	Polarisationsindex
Power\/iew	Metrels PC Software für POA Support
POA	Netzgualitätsanalve
PSC	Linbeeinflusster Kurzschlussstrom
	Destovoltoik
\cap	Plindloistung
R	Widerstand
Roc	Widerstand Potentialausgleichsleitung
Reas	Durch approxideration d mit 200 m A
RCD	Febleretromschutzschalter
	Fehlerstromschutzschalter Automatische Drüfung
	Fehlerstromschutzschalter Automatische Drüfung Eine
SEQUENCE [®]	Abfolge aller RCD Prüfungen die in einer kombinierten
DEQUENCE	Prüfung durchgeführt werden - durchgeführt werden -
	Warenzeichen von Metrel d.d.
RCD I	Fehlerstromschutzschalter Prüfung Auslösestrom
RCD t	Fehlerstromschutzschalter Prüfung Auslösezeit
RCD Uc	Fehlerstromschutzschalter Prüfung Berührungsspannung
RCM	Fehlerstrommonitor
Rcon	Leiterwiderstand
RE	Erdungswiderstand
RELOCAL	Lokalor Erdungswiderstand
RFID	Radio Fraguency Identitiv
RH	Radio Frequency Identity Rolativo Luftfouchtigkoit:
Riso	Isolationswiderstand
RUNE	Loitungewiderstand
	Duicingangswiderstand
INL-PE	remeischlenenwiderständ

RMS	Quadratischer Mittelwert
Rpec_local	Schutzleiterwiderstand (PE) jeder einzelnen Erdung oder
	Gruppenerdung.
RT	Widerstand des Transformators
RVC	Schnelle Spannungsänderungen
S	Scheinleistung
SB	Verteilung
SELV	Getrennte oder Sicherheitskleinspannung
STC	Standard Testbedingungen
THD	Gesamte Oberwellenverzerrung
TN	Erdungssystem an der Stromguelle und/oder an den
	Verteilungspunkten geerdet
TN-C	Erdungssystem an der Stromguelle und/oder an den
	Verteilungspunkten geerdet. PE- und N-Leiter sind
	verbunden zu einem PEN-Leiter.
TN-C-S	Erdungssystem an der Stromguelle und/oder an den
	Verteilungspunkten geerdet. Freilegende leitende Teile
	teilweise mit dem PE-Leiter und teilweise mit dem PEN-
	Leiter verbunden.
TN-S	Erdungssystem an der Stromquelle und/oder an den
	Verteilungspunkten geerdet. N- und PE-Leiter sind
	getrennt.
TRMS	Effektivwert True-RMS
TT	Alle zugänglichen Metallteile sind mit dem Erdungssystem verbunden.
Τ _Δ	Auslösezeit eines RCD
Uc	Berührungsspannung
Ucl	Grenzwert Berührungsspannung
U _{CSF}	Berührungsspannungen bei Einzelfehler an der Erdung.
U _{LN} ; U _{L-N}	Netznennspannung
UL-PE	Bemessungsfehlerschleifenspannung oder
	Nennversorgungspannung.
Un; Unom	Nennspannung
Uoc	Leerlaufspannung:
USB	Universal Serial Bus
WEEE	Elektro- und Elektronikgeräte-Abfall
ZLINE; ZLN; ZL-N; ZL-L, L-N	Leitungsimpedanz
ZLOOP; ZL-PE	Fehlerschleifenimpedanz
ZN	Impedanz des Neutralleiters
Z _{REF} :	, Referenzleitungsimpedanz
Zs; Zs RCD	Schleifenimpedanz in einem RCD geschützten System
ZT	Sekundärimpedanz des Transformators
ΔU; dU	Gemessener Spannungsabfall
Ŋ	Effizienz
ρ	spezifischer Widerstand des Leitermaterials
•	

2 ANHANG B

2.1 Änderungen

Titel	Code Nr.	Version	Änderungen
MI 3399 ElectricalSafety	20752492	1.0	Vorläufige Version
und Quality Trainer			
MI 3399 ElectricalSafety	20752492	1.1	Detaillierte Beschreibung des MI
und Quality Trainer			3399 mit Schaltplan in
			Einführungsteil hinzugefügt.
MI 3399 ElectricalSafety	20752492	1.1.2	Schaltpläne für den Prüfer für MI
und Quality Trainer			3399 im Abschnitt Einführung
			hinzugefügt.
			Erweiterter Abschnitt Netzqualität
			mit der Theorie aus dem PQA
			Handbuch.
			Erweiterter Abschnitt Netzqualität
			mit der Theorie aus dem GT
			Handbuch.
			Anhang B hinzugefügt
MI 3399 ElectricalSafety	20752492	1.1.3	Anweisungen zum Anschluss des
und Quality Trainer			MI 3399 an ein 1-Phasensystem
			hinzugefügt.
			Leiter für Fehlerschalter S14 von
			L3/N auf L1/N geändert.
			Die verwendete Nummer der
			Steckdose für den Fehlerschalter
			S15 wurde von F3/1 auf F3/2
			geändert.
			Erwarteter Messwert 22 Ω aut
			100 Ω geandert, wenn der
			Fenierschalter S24 EIN Ist.
			Letter für Fenierschalter S28 von
			L'I/PE auf L2/PE geandert.
			Die verwendete Nummer der
			Steckdose für den Fehlerschalter
			SSU WUIDE VOII F1/2 aui F2/2
			geanuert. Aktualiaiartaa Bild dar MI 2200
			Aktualisiertes bild der Wil 3399 Drüfpunkte
			Pluipulikie. Die technischen Spezifikationen
			für GT und PV Domoboorde
			uli GT- uliu FV-Demoboalus
MI 3300 Electrical Safaty	20752402	111	Frwartete Rice Worte in der
und Quality Trainor	201 32492	1.1.4	Envancie Niso werte in del Fehlersimulationstabollo (Kapital
			1.6 Finstellung der Daramator
			des Application Trainars)
			hinzugefügt
MI 3399 ElectricalSafety	20752492	115	Korrektur bezüglich der CE-
und Quality Trainer		Kennzeichnung.	
---------------------	--	-----------------------------	
		Kleinere Korrekturen.	
		Bilder im PV-Teil geändert.	

2.2 Literatur

- [1] **MI 3399 Electrical Safety and Quality Application Trainer**; Version 1.0; 20 752 499
- [2] Hauptkatalog 2012: Gut zu wissen
- [3] Leitfaden zum Prüfen und Überprüfen von Niederspannungsanlagen .; Version 1.1;

20 751 238

- [4] Leitfaden für Messungen an PV-Anlagen ; Version 1.1; 20 750 205
- [5] Leitfaden für die moderne Netz-Qualitäts-Analyse Techniken; Version 1.0; 20 750 592
- [6] Handbuch zum Prüfen elektrischer Betriebsmittel ; Version 1.1; 20 751 976
- [7] Überprüfung der Sicherheit von Maschinen; Version 1.1; 20 751 202
- [8] Leitfaden für Messungen an PV-Anlagen ; Version 1.0; 20 752 069

Hersteller:

Autorisierter Distributor

TVW Meßtechnik GmbH Semmelweg 31 32257 Bünde Fon: 05223 / 9277 - 0 Fax: 05223 / 9277 - 40 info@tvwbuende.de

www.tvwbuende.de

